Skip to content
Snippets Groups Projects
user avatar
Marcelo Vanzin authored
This allows configuration to be more flexible, for example, when the cluster does
not have a homogeneous configuration (e.g. packages are installed on different
paths in different nodes). By allowing one to reference the environment from
the conf, it becomes possible to work around those in certain cases.

As part of the implementation, ConfigEntry now keeps track of all "known" configs
(i.e. those created through the use of ConfigBuilder), since that list is used
by the resolution code. This duplicates some code in SQLConf, which could potentially
be merged with this now. It will also make it simpler to implement some missing
features such as filtering which configs show up in the UI or in event logs - which
are not part of this change.

Another change is in the way ConfigEntry reads config data; it now takes a string
map and a function that reads env variables, so that it can be called both from
SparkConf and SQLConf. This makes it so both places follow the same read path,
instead of having to replicate certain logic in SQLConf. There are still a
couple of methods in SQLConf that peek into fields of ConfigEntry directly,
though.

Tested via unit tests, and by using the new variable expansion functionality
in a shell session with a custom spark.sql.hive.metastore.jars value.

Author: Marcelo Vanzin <vanzin@cloudera.com>

Closes #14022 from vanzin/SPARK-16272.
75a06aa2
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark". For developing Spark using an IDE, see Eclipse and IntelliJ.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.