Skip to content
Snippets Groups Projects
user avatar
hyukjinkwon authored
[SPARK-16216][SQL][FOLLOWUP] Enable timestamp type tests for JSON and verify all unsupported types in CSV

## What changes were proposed in this pull request?

This PR enables the tests for `TimestampType` for JSON and unifies the logics for verifying schema when writing in CSV.

In more details, this PR,

- Enables the tests for `TimestampType` for JSON and

  This was disabled due to an issue in `DatatypeConverter.parseDateTime` which parses dates incorrectly, for example as below:

  ```scala
   val d = javax.xml.bind.DatatypeConverter.parseDateTime("0900-01-01T00:00:00.000").getTime
  println(d.toString)
  ```
  ```
  Fri Dec 28 00:00:00 KST 899
  ```

  However, since we use `FastDateFormat`, it seems we are safe now.

  ```scala
  val d = FastDateFormat.getInstance("yyyy-MM-dd'T'HH:mm:ss.SSS").parse("0900-01-01T00:00:00.000")
  println(d)
  ```
  ```
  Tue Jan 01 00:00:00 PST 900
  ```

- Verifies all unsupported types in CSV

  There is a separate logics to verify the schemas in `CSVFileFormat`. This is actually not quite correct enough because we don't support `NullType` and `CalanderIntervalType` as well `StructType`, `ArrayType`, `MapType`. So, this PR adds both types.

## How was this patch tested?

Tests in `JsonHadoopFsRelation` and `CSVSuite`

Author: hyukjinkwon <gurwls223@gmail.com>

Closes #14829 from HyukjinKwon/SPARK-16216-followup.
6063d596
History
Name Last commit Last update
..
catalyst
core
hive-thriftserver
hive
README.md

Spark SQL

This module provides support for executing relational queries expressed in either SQL or the DataFrame/Dataset API.

Spark SQL is broken up into four subprojects:

  • Catalyst (sql/catalyst) - An implementation-agnostic framework for manipulating trees of relational operators and expressions.
  • Execution (sql/core) - A query planner / execution engine for translating Catalyst's logical query plans into Spark RDDs. This component also includes a new public interface, SQLContext, that allows users to execute SQL or LINQ statements against existing RDDs and Parquet files.
  • Hive Support (sql/hive) - Includes an extension of SQLContext called HiveContext that allows users to write queries using a subset of HiveQL and access data from a Hive Metastore using Hive SerDes. There are also wrappers that allows users to run queries that include Hive UDFs, UDAFs, and UDTFs.
  • HiveServer and CLI support (sql/hive-thriftserver) - Includes support for the SQL CLI (bin/spark-sql) and a HiveServer2 (for JDBC/ODBC) compatible server.