Skip to content
Snippets Groups Projects
user avatar
hyukjinkwon authored
[SPARK-17123][SQL] Use type-widened encoder for DataFrame rather than existing encoder to allow type-widening from set operations

# What changes were proposed in this pull request?

This PR fixes set operations in `DataFrame` to be performed fine without exceptions when the types are non-scala native types. (e.g, `TimestampType`, `DateType` and `DecimalType`).

The problem is, it seems set operations such as `union`, `intersect` and `except` uses the encoder belonging to the `Dataset` in caller.

So, `Dataset` of the caller holds `ExpressionEncoder[Row]` as it is when the set operations are performed. However, the return types can be actually widen. So, we should use `ExpressionEncoder[Row]` constructed from executed plan rather than using existing one. Otherwise, this will generate some codes wrongly via `StaticInvoke`.

Running the codes below:

```scala
val dates = Seq(
  (new Date(0), BigDecimal.valueOf(1), new Timestamp(2)),
  (new Date(3), BigDecimal.valueOf(4), new Timestamp(5))
).toDF("date", "timestamp", "decimal")

val widenTypedRows = Seq(
  (new Timestamp(2), 10.5D, "string")
).toDF("date", "timestamp", "decimal")

val results = dates.union(widenTypedRows).collect()
results.foreach(println)
```

prints below:

**Before**

```java
23:08:54.490 ERROR org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator: failed to compile: org.codehaus.commons.compiler.CompileException: File 'generated.java', Line 28, Column 107: No applicable constructor/method found for actual parameters "long"; candidates are: "public static java.sql.Date org.apache.spark.sql.catalyst.util.DateTimeUtils.toJavaDate(int)"
/* 001 */ public java.lang.Object generate(Object[] references) {
/* 002 */   return new SpecificSafeProjection(references);
/* 003 */ }
/* 004 */
/* 005 */ class SpecificSafeProjection extends org.apache.spark.sql.catalyst.expressions.codegen.BaseProjection {
/* 006 */
/* 007 */   private Object[] references;
/* 008 */   private MutableRow mutableRow;
/* 009 */   private Object[] values;
/* 010 */   private org.apache.spark.sql.types.StructType schema;
/* 011 */
/* 012 */
/* 013 */   public SpecificSafeProjection(Object[] references) {
/* 014 */     this.references = references;
/* 015 */     mutableRow = (MutableRow) references[references.length - 1];
/* 016 */
/* 017 */     this.schema = (org.apache.spark.sql.types.StructType) references[0];
/* 018 */   }
/* 019 */
/* 020 */   public java.lang.Object apply(java.lang.Object _i) {
/* 021 */     InternalRow i = (InternalRow) _i;
/* 022 */
/* 023 */     values = new Object[3];
/* 024 */
/* 025 */     boolean isNull2 = i.isNullAt(0);
/* 026 */     long value2 = isNull2 ? -1L : (i.getLong(0));
/* 027 */     boolean isNull1 = isNull2;
/* 028 */     final java.sql.Date value1 = isNull1 ? null : org.apache.spark.sql.catalyst.util.DateTimeUtils.toJavaDate(value2);
/* 029 */     isNull1 = value1 == null;
/* 030 */     if (isNull1) {
/* 031 */       values[0] = null;
/* 032 */     } else {
/* 033 */       values[0] = value1;
/* 034 */     }
/* 035 */
/* 036 */     boolean isNull4 = i.isNullAt(1);
/* 037 */     double value4 = isNull4 ? -1.0 : (i.getDouble(1));
/* 038 */
/* 039 */     boolean isNull3 = isNull4;
/* 040 */     java.math.BigDecimal value3 = null;
/* 041 */     if (!isNull3) {
/* 042 */
/* 043 */       Object funcResult = null;
/* 044 */       funcResult = value4.toJavaBigDecimal();
/* 045 */       if (funcResult == null) {
/* 046 */         isNull3 = true;
/* 047 */       } else {
/* 048 */         value3 = (java.math.BigDecimal) funcResult;
/* 049 */       }
/* 050 */
/* 051 */     }
/* 052 */     isNull3 = value3 == null;
/* 053 */     if (isNull3) {
/* 054 */       values[1] = null;
/* 055 */     } else {
/* 056 */       values[1] = value3;
/* 057 */     }
/* 058 */
/* 059 */     boolean isNull6 = i.isNullAt(2);
/* 060 */     UTF8String value6 = isNull6 ? null : (i.getUTF8String(2));
/* 061 */     boolean isNull5 = isNull6;
/* 062 */     final java.sql.Timestamp value5 = isNull5 ? null : org.apache.spark.sql.catalyst.util.DateTimeUtils.toJavaTimestamp(value6);
/* 063 */     isNull5 = value5 == null;
/* 064 */     if (isNull5) {
/* 065 */       values[2] = null;
/* 066 */     } else {
/* 067 */       values[2] = value5;
/* 068 */     }
/* 069 */
/* 070 */     final org.apache.spark.sql.Row value = new org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema(values, schema);
/* 071 */     if (false) {
/* 072 */       mutableRow.setNullAt(0);
/* 073 */     } else {
/* 074 */
/* 075 */       mutableRow.update(0, value);
/* 076 */     }
/* 077 */
/* 078 */     return mutableRow;
/* 079 */   }
/* 080 */ }
```

**After**

```bash
[1969-12-31 00:00:00.0,1.0,1969-12-31 16:00:00.002]
[1969-12-31 00:00:00.0,4.0,1969-12-31 16:00:00.005]
[1969-12-31 16:00:00.002,10.5,string]
```

## How was this patch tested?

Unit tests in `DataFrameSuite`

Author: hyukjinkwon <gurwls223@gmail.com>

Closes #15072 from HyukjinKwon/SPARK-17123.
5fa9f879
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark". For developing Spark using an IDE, see Eclipse and IntelliJ.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.

## Contributing

Please review the Contribution to Spark wiki for information on how to get started contributing to the project.