Skip to content
Snippets Groups Projects
user avatar
eyal farago authored
## What changes were proposed in this pull request?

Simplify struct creation, especially the aspect of `CleanupAliases` which missed some aliases when handling trees created by `CreateStruct`.

This PR includes:

1. A failing test (create struct with nested aliases, some of the aliases survive `CleanupAliases`).
2. A fix that transforms `CreateStruct` into a `CreateNamedStruct` constructor, effectively eliminating `CreateStruct` from all expression trees.
3. A `NamePlaceHolder` used by `CreateStruct` when column names cannot be extracted from unresolved `NamedExpression`.
4. A new Analyzer rule that resolves `NamePlaceHolder` into a string literal once the `NamedExpression` is resolved.
5. `CleanupAliases` code was simplified as it no longer has to deal with `CreateStruct`'s top level columns.

## How was this patch tested?

running all tests-suits in package org.apache.spark.sql, especially including the analysis suite, making sure added test initially fails, after applying suggested fix rerun the entire analysis package successfully.

modified few tests that expected `CreateStruct` which is now transformed into `CreateNamedStruct`.

Credit goes to hvanhovell for assisting with this PR.

Author: eyal farago <eyal farago>
Author: eyal farago <eyal.farago@gmail.com>
Author: Herman van Hovell <hvanhovell@databricks.com>
Author: Eyal Farago <eyal.farago@actimize.com>
Author: Hyukjin Kwon <gurwls223@gmail.com>
Author: eyalfa <eyal.farago@gmail.com>

Closes #14444 from eyalfa/SPARK-16839_redundant_aliases_after_cleanupAliases.
5441a626
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark". For developing Spark using an IDE, see Eclipse and IntelliJ.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.

## Contributing

Please review the Contribution to Spark wiki for information on how to get started contributing to the project.