Skip to content
Snippets Groups Projects
user avatar
gatorsmile authored
### What changes were proposed in this pull request?
As explained in https://github.com/apache/spark/pull/14797:
>Some analyzer rules have assumptions on logical plans, optimizer may break these assumption, we should not pass an optimized query plan into QueryExecution (will be analyzed again), otherwise we may some weird bugs.
For example, we have a rule for decimal calculation to promote the precision before binary operations, use PromotePrecision as placeholder to indicate that this rule should not apply twice. But a Optimizer rule will remove this placeholder, that break the assumption, then the rule applied twice, cause wrong result.

We should not optimize the query in CTAS more than once. For example,
```Scala
spark.range(99, 101).createOrReplaceTempView("tab1")
val sqlStmt = "SELECT id, cast(id as long) * cast('1.0' as decimal(38, 18)) as num FROM tab1"
sql(s"CREATE TABLE tab2 USING PARQUET AS $sqlStmt")
checkAnswer(spark.table("tab2"), sql(sqlStmt))
```
Before this PR, the results do not match
```
== Results ==
!== Correct Answer - 2 ==       == Spark Answer - 2 ==
![100,100.000000000000000000]   [100,null]
 [99,99.000000000000000000]     [99,99.000000000000000000]
```
After this PR, the results match.
```
+---+----------------------+
|id |num                   |
+---+----------------------+
|99 |99.000000000000000000 |
|100|100.000000000000000000|
+---+----------------------+
```

In this PR, we do not treat the `query` in CTAS as a child. Thus, the `query` will not be optimized when optimizing CTAS statement. However, we still need to analyze it for normalizing and verifying the CTAS in the Analyzer. Thus, we do it in the analyzer rule `PreprocessDDL`, because so far only this rule needs the analyzed plan of the `query`.

### How was this patch tested?
Added a test

Author: gatorsmile <gatorsmile@gmail.com>

Closes #15048 from gatorsmile/ctasOptimized.
52738d4e
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark". For developing Spark using an IDE, see Eclipse and IntelliJ.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.