Skip to content
Snippets Groups Projects
user avatar
Mubarak Seyed authored
This is a refactored version of the original PR https://github.com/apache/spark/pull/1723

 my mubarak

Please take a look andrewor14, mubarak

Author: Mubarak Seyed <mubarak.seyed@gmail.com>
Author: Tathagata Das <tathagata.das1565@gmail.com>

Closes #2464 from tdas/streaming-callsite and squashes the following commits:

dc54c71 [Tathagata Das] Made changes based on PR comments.
390b45d [Tathagata Das] Fixed minor bugs.
904cd92 [Tathagata Das] Merge remote-tracking branch 'apache-github/master' into streaming-callsite
7baa427 [Tathagata Das] Refactored getCallSite and setCallSite to make it simpler. Also added unit test for DStream creation site.
b9ed945 [Mubarak Seyed] Adding streaming utils
c461cf4 [Mubarak Seyed] Merge remote-tracking branch 'upstream/master'
ceb43da [Mubarak Seyed] Changing default regex function name
8c5d443 [Mubarak Seyed] Merge remote-tracking branch 'upstream/master'
196121b [Mubarak Seyed] Merge remote-tracking branch 'upstream/master'
491a1eb [Mubarak Seyed] Removing streaming visibility from getRDDCreationCallSite in DStream
33a7295 [Mubarak Seyed] Fixing review comments: Merging both setCallSite methods
c26d933 [Mubarak Seyed] Merge remote-tracking branch 'upstream/master'
f51fd9f [Mubarak Seyed] Fixing scalastyle, Regex for Utils.getCallSite, and changing method names in DStream
5051c58 [Mubarak Seyed] Getting return value of compute() into variable and call setCallSite(prevCallSite) only once. Adding return for other code paths (for None)
a207eb7 [Mubarak Seyed] Fixing code review comments
ccde038 [Mubarak Seyed] Removing Utils import from MappedDStream
2a09ad6 [Mubarak Seyed] Changes in Utils.scala for SPARK-1853
1d90cc3 [Mubarak Seyed] Changes for SPARK-1853
5f3105a [Mubarak Seyed] Merge remote-tracking branch 'upstream/master'
70f494f [Mubarak Seyed] Changes for SPARK-1853
1500deb [Mubarak Seyed] Changes in Spark Streaming UI
9d38d3c [Mubarak Seyed] [SPARK-1853] Show Streaming application code context (file, line number) in Spark Stages UI
d466d75 [Mubarak Seyed] Changes for spark streaming UI

(cherry picked from commit 729952a5)
Signed-off-by: default avatarAndrew Or <andrewor14@gmail.com>
505ed6ba
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.apache.org/documentation.html. This README file only contains basic setup instructions.

Building Spark

Spark is built on Scala 2.10. To build Spark and its example programs, run:

./sbt/sbt assembly

(You do not need to do this if you downloaded a pre-built package.)

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting -Dhadoop.version when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ sbt/sbt -Dhadoop.version=1.2.1 assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ sbt/sbt -Dhadoop.version=2.0.0-mr1-cdh4.2.0 assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set -Pyarn:

# Apache Hadoop 2.0.5-alpha
$ sbt/sbt -Dhadoop.version=2.0.5-alpha -Pyarn assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ sbt/sbt -Dhadoop.version=2.0.0-cdh4.2.0 -Pyarn assembly

# Apache Hadoop 2.2.X and newer
$ sbt/sbt -Dhadoop.version=2.2.0 -Pyarn assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

A Note About Thrift JDBC server and CLI for Spark SQL

Spark SQL supports Thrift JDBC server and CLI. See sql-programming-guide.md for more information about using the JDBC server and CLI. You can use those features by setting -Phive when building Spark as follows.

$ sbt/sbt -Phive  assembly

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.