Skip to content
Snippets Groups Projects
user avatar
Joseph K. Bradley authored
For SPARK-5867:
* The spark.ml programming guide needs to be updated to use the new SQL DataFrame API instead of the old SchemaRDD API.
* It should also include Python examples now.

For SPARK-5892:
* Fix Python docs
* Various other cleanups

BTW, I accidentally merged this with master.  If you want to compile it on your own, use this branch which is based on spark/branch-1.3 and cherry-picks the commits from this PR: [https://github.com/jkbradley/spark/tree/doc-review-1.3-check]

CC: mengxr  (ML),  davies  (Python docs)

Author: Joseph K. Bradley <joseph@databricks.com>

Closes #4675 from jkbradley/doc-review-1.3 and squashes the following commits:

f191bb0 [Joseph K. Bradley] small cleanups
e786efa [Joseph K. Bradley] small doc corrections
6b1ab4a [Joseph K. Bradley] fixed python lint test
946affa [Joseph K. Bradley] Added sample data for ml.MovieLensALS example.  Changed spark.ml Java examples to use DataFrames API instead of sql()
da81558 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into doc-review-1.3
629dbf5 [Joseph K. Bradley] Updated based on code review: * made new page for old migration guides * small fixes * moved inherit_doc in python
b9df7c4 [Joseph K. Bradley] Small cleanups: toDF to toDF(), adding s for string interpolation
34b067f [Joseph K. Bradley] small doc correction
da16aef [Joseph K. Bradley] Fixed python mllib docs
8cce91c [Joseph K. Bradley] GMM: removed old imports, added some doc
695f3f6 [Joseph K. Bradley] partly done trying to fix inherit_doc for class hierarchies in python docs
a72c018 [Joseph K. Bradley] made ChiSqTestResult appear in python docs
b05a80d [Joseph K. Bradley] organize imports. doc cleanups
e572827 [Joseph K. Bradley] updated programming guide for ml and mllib
4a17eedb
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run all automated tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.