Skip to content
Snippets Groups Projects
user avatar
Calvin Jia authored
This is a reopening of #4867.
A short summary of the issues resolved from the previous PR:

1. HTTPClient version mismatch: Selenium (used for UI tests) requires version 4.3.x, and Tachyon included 4.2.5 through a transitive dependency of its shaded thrift jar. To address this, Tachyon 0.6.3 will promote the transitive dependencies of the shaded jar so they can be excluded in spark.

2. Jackson-Mapper-ASL version mismatch: In lower versions of hadoop-client (ie. 1.0.4), version 1.0.1 is included. The parquet library used in spark sql requires version 1.8+. Its unclear to me why upgrading tachyon-client would cause this dependency to break. The solution was to exclude jackson-mapper-asl from hadoop-client.

It seems that the dependency management in spark-parent will not work on transitive dependencies, one way to make sure jackson-mapper-asl is included with the correct version is to add it as a top level dependency. The best solution would be to exclude the dependency in the modules which require a higher version, but that did not fix the unit tests. Any suggestions on the best way to solve this would be appreciated!

Author: Calvin Jia <jia.calvin@gmail.com>

Closes #5354 from calvinjia/upgrade_tachyon_0.6.3 and squashes the following commits:

0eefe4d [Calvin Jia] Handle httpclient version in maven dependency management. Remove httpclient version setting from profiles.
7c00dfa [Calvin Jia] Set httpclient version to 4.3.2 for selenium. Specify version of httpclient for sql/hive (previously 4.2.5 transitive dependency of libthrift).
9263097 [Calvin Jia] Merge master to test latest changes
dbfc1bd [Calvin Jia] Use Tachyon 0.6.4 for cleaner dependencies.
e2ff80a [Calvin Jia] Exclude the jetty and curator promoted dependencies from tachyon-client.
a3a29da [Calvin Jia] Update tachyon-client exclusions.
0ae6c97 [Calvin Jia] Change tachyon version to 0.6.3
a204df9 [Calvin Jia] Update make distribution tachyon version.
a93c94f [Calvin Jia] Exclude jackson-mapper-asl from hadoop client since it has a lower version than spark's expected version.
a8a923c [Calvin Jia] Exclude httpcomponents from Tachyon
910fabd [Calvin Jia] Update to master
eed9230 [Calvin Jia] Update tachyon version to 0.6.1.
11907b3 [Calvin Jia] Use TachyonURI for tachyon paths instead of strings.
71bf441 [Calvin Jia] Upgrade Tachyon client version to 0.6.0.
438859eb
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run all automated tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.