Skip to content
Snippets Groups Projects
user avatar
Andre Schumacher authored
Simple filter predicates such as LessThan, GreaterThan, etc., where one side is a literal and the other one a NamedExpression are now pushed down to the underlying ParquetTableScan. Here are some results for a microbenchmark with a simple schema of six fields of different types where most records failed the test:

             | Uncompressed  | Compressed
-------------| ------------- | -------------
File size  |     10 GB  | 2 GB
Speedup |      2         | 1.8

Since mileage may vary I added a new option to SparkConf:

`org.apache.spark.sql.parquet.filter.pushdown`

Default value would be `true` and setting it to `false` disables the pushdown. When most rows are expected to pass the filter or when there are few fields performance can be better when pushdown is disabled. The default should fit situations with a reasonable number of (possibly nested) fields where not too many records on average pass the filter.

Because of an issue with Parquet ([see here](https://github.com/Parquet/parquet-mr/issues/371])) currently only predicates on non-nullable attributes are pushed down. If one would know that for a given table no optional fields have missing values one could also allow overriding this.

Author: Andre Schumacher <andre.schumacher@iki.fi>

Closes #511 from AndreSchumacher/parquet_filter and squashes the following commits:

16bfe83 [Andre Schumacher] Removing leftovers from merge during rebase
7b304ca [Andre Schumacher] Fixing formatting
c36d5cb [Andre Schumacher] Scalastyle
3da98db [Andre Schumacher] Second round of review feedback
7a78265 [Andre Schumacher] Fixing broken formatting in ParquetFilter
a86553b [Andre Schumacher] First round of code review feedback
b0f7806 [Andre Schumacher] Optimizing imports in ParquetTestData
85fea2d [Andre Schumacher] Adding SparkConf setting to disable filter predicate pushdown
f0ad3cf [Andre Schumacher] Undoing changes not needed for this PR
210e9cb [Andre Schumacher] Adding disjunctive filter predicates
a93a588 [Andre Schumacher] Adding unit test for filtering
6d22666 [Andre Schumacher] Extending ParquetFilters
93e8192 [Andre Schumacher] First commit Parquet record filtering
40d6acd6
History

Apache Spark

Lightning-Fast Cluster Computing - http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.apache.org/documentation.html. This README file only contains basic setup instructions.

Building Spark

Spark is built on Scala 2.10. To build Spark and its example programs, run:

./sbt/sbt assembly

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example org.apache.spark.examples.SparkLR

will run the Logistic Regression example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./sbt/sbt test

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting the SPARK_HADOOP_VERSION environment when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ SPARK_HADOOP_VERSION=1.2.1 sbt/sbt assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ SPARK_HADOOP_VERSION=2.0.0-mr1-cdh4.2.0 sbt/sbt assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set SPARK_YARN=true:

# Apache Hadoop 2.0.5-alpha
$ SPARK_HADOOP_VERSION=2.0.5-alpha SPARK_YARN=true sbt/sbt assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ SPARK_HADOOP_VERSION=2.0.0-cdh4.2.0 SPARK_YARN=true sbt/sbt assembly

# Apache Hadoop 2.2.X and newer
$ SPARK_HADOOP_VERSION=2.2.0 SPARK_YARN=true sbt/sbt assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.