Skip to content
Snippets Groups Projects
user avatar
FlytxtRnD authored
 This allows Kmeans to be initialized using an existing set of cluster centers provided as  a KMeansModel object. This mode of initialization performs a single run.

Author: FlytxtRnD <meethu.mathew@flytxt.com>

Closes #6737 from FlytxtRnD/Kmeans-8018 and squashes the following commits:

94b56df [FlytxtRnD] style correction
ef95ee2 [FlytxtRnD] style correction
c446c58 [FlytxtRnD] documentation and numRuns warning change
06d13ef [FlytxtRnD] numRuns corrected
d12336e [FlytxtRnD] numRuns variable modifications
07f8554 [FlytxtRnD] remove setRuns from setIntialModel
e721dfe [FlytxtRnD] Merge remote-tracking branch 'upstream/master' into Kmeans-8018
242ead1 [FlytxtRnD] corrected == to === in assert
714acb5 [FlytxtRnD] added numRuns
60c8ce2 [FlytxtRnD] ignore runs parameter and initialModel test suite changed
582e6d9 [FlytxtRnD] Merge remote-tracking branch 'upstream/master' into Kmeans-8018
3f5fc8e [FlytxtRnD] test case modified and one runs condition added
cd5dc5c [FlytxtRnD] Merge remote-tracking branch 'upstream/master' into Kmeans-8018
16f1b53 [FlytxtRnD] Merge branch 'Kmeans-8018', remote-tracking branch 'upstream/master' into Kmeans-8018
e9c35d7 [FlytxtRnD] Remove getInitialModel and match cluster count criteria
6959861 [FlytxtRnD] Accept initial cluster centers in KMeans
3f6296fe
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.