Skip to content
Snippets Groups Projects
user avatar
Xiangrui Meng authored
* `NaiveBayes` -> `SparseNaiveBayes`
* `KMeans` -> `DenseKMeans`
* `SVMWithSGD` and `LogisticRegerssionWithSGD` -> `BinaryClassification`
* `ALS` -> `MovieLensALS`
* `LinearRegressionWithSGD`, `LassoWithSGD`, and `RidgeRegressionWithSGD` -> `LinearRegression`
* `DecisionTree` -> `DecisionTreeRunner`

`scopt` is used for parsing command-line parameters. `scopt` has MIT license and it only depends on `scala-library`.

Example help message:

~~~
BinaryClassification: an example app for binary classification.
Usage: BinaryClassification [options] <input>

  --numIterations <value>
        number of iterations
  --stepSize <value>
        initial step size, default: 1.0
  --algorithm <value>
        algorithm (SVM,LR), default: LR
  --regType <value>
        regularization type (L1,L2), default: L2
  --regParam <value>
        regularization parameter, default: 0.1
  <input>
        input paths to labeled examples in LIBSVM format
~~~

Author: Xiangrui Meng <meng@databricks.com>

Closes #584 from mengxr/mllib-main and squashes the following commits:

7b58c60 [Xiangrui Meng] minor
6e35d7e [Xiangrui Meng] make imports explicit and fix code style
c6178c9 [Xiangrui Meng] update TS PCA/SVD to use new spark-submit
6acff75 [Xiangrui Meng] use scopt for DecisionTreeRunner
be86069 [Xiangrui Meng] use main instead of extending App
b3edf68 [Xiangrui Meng] move DecisionTree's main method to examples
8bfaa5a [Xiangrui Meng] change NaiveBayesParams to Params
fe23dcb [Xiangrui Meng] remove main from KMeans and add DenseKMeans as an example
67f4448 [Xiangrui Meng] remove main methods from linear regression algorithms and add LinearRegression example
b066bbc [Xiangrui Meng] remove main from ALS and add MovieLensALS example
b040f3b [Xiangrui Meng] change BinaryClassificationParams to Params
577945b [Xiangrui Meng] remove unused imports from NB
3d299bc [Xiangrui Meng] remove main from LR/SVM and add an example app for binary classification
f70878e [Xiangrui Meng] remove main from NaiveBayes and add an example NaiveBayes app
01ec2cd [Xiangrui Meng] Merge branch 'master' into mllib-main
9420692 [Xiangrui Meng] add scopt to examples dependencies
3f38334f
History

Apache Spark

Lightning-Fast Cluster Computing - http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.apache.org/documentation.html. This README file only contains basic setup instructions.

Building Spark

Spark is built on Scala 2.10. To build Spark and its example programs, run:

./sbt/sbt assembly

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> <params>. For example:

./bin/run-example org.apache.spark.examples.SparkLR local[2]

will run the Logistic Regression example locally on 2 CPUs.

Each of the example programs prints usage help if no params are given.

All of the Spark samples take a <master> parameter that is the cluster URL to connect to. This can be a mesos:// or spark:// URL, or "local" to run locally with one thread, or "local[N]" to run locally with N threads.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./sbt/sbt test

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting the SPARK_HADOOP_VERSION environment when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ SPARK_HADOOP_VERSION=1.2.1 sbt/sbt assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ SPARK_HADOOP_VERSION=2.0.0-mr1-cdh4.2.0 sbt/sbt assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set SPARK_YARN=true:

# Apache Hadoop 2.0.5-alpha
$ SPARK_HADOOP_VERSION=2.0.5-alpha SPARK_YARN=true sbt/sbt assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ SPARK_HADOOP_VERSION=2.0.0-cdh4.2.0 SPARK_YARN=true sbt/sbt assembly

# Apache Hadoop 2.2.X and newer
$ SPARK_HADOOP_VERSION=2.2.0 SPARK_YARN=true sbt/sbt assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.