Skip to content
Snippets Groups Projects
user avatar
Cheng Hao authored
In HiveTableScan.scala, ObjectInspector was created for all of the partition based records, which probably causes ClassCastException if the object inspector is not identical among table & partitions.

This is the follow up with:
https://github.com/apache/spark/pull/1408
https://github.com/apache/spark/pull/1390

I've run a micro benchmark in my local with 15000000 records totally, and got the result as below:

With This Patch  |  Partition-Based Table  |  Non-Partition-Based Table
------------ | ------------- | -------------
No  |  1927 ms  |  1885 ms
Yes  | 1541 ms  |  1524 ms

It showed this patch will also improve the performance.

PS:  the benchmark code is also attached. (thanks liancheng )
```
package org.apache.spark.sql.hive

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.sql._

object HiveTableScanPrepare extends App {
  case class Record(key: String, value: String)

  val sparkContext = new SparkContext(
    new SparkConf()
      .setMaster("local")
      .setAppName(getClass.getSimpleName.stripSuffix("$")))

  val hiveContext = new LocalHiveContext(sparkContext)

  val rdd = sparkContext.parallelize((1 to 3000000).map(i => Record(s"$i", s"val_$i")))

  import hiveContext._

  hql("SHOW TABLES")
  hql("DROP TABLE if exists part_scan_test")
  hql("DROP TABLE if exists scan_test")
  hql("DROP TABLE if exists records")
  rdd.registerAsTable("records")

  hql("""CREATE TABLE part_scan_test (key STRING, value STRING) PARTITIONED BY (part1 string, part2 STRING)
                 | ROW FORMAT SERDE
                 | 'org.apache.hadoop.hive.serde2.columnar.LazyBinaryColumnarSerDe'
                 | STORED AS RCFILE
               """.stripMargin)
  hql("""CREATE TABLE scan_test (key STRING, value STRING)
                 | ROW FORMAT SERDE
                 | 'org.apache.hadoop.hive.serde2.columnar.LazyBinaryColumnarSerDe'
                 | STORED AS RCFILE
               """.stripMargin)

  for (part1 <- 2000 until 2001) {
    for (part2 <- 1 to 5) {
      hql(s"""from records
                 | insert into table part_scan_test PARTITION (part1='$part1', part2='2010-01-$part2')
                 | select key, value
               """.stripMargin)
      hql(s"""from records
                 | insert into table scan_test select key, value
               """.stripMargin)
    }
  }
}

object HiveTableScanTest extends App {
  val sparkContext = new SparkContext(
    new SparkConf()
      .setMaster("local")
      .setAppName(getClass.getSimpleName.stripSuffix("$")))

  val hiveContext = new LocalHiveContext(sparkContext)

  import hiveContext._

  hql("SHOW TABLES")
  val part_scan_test = hql("select key, value from part_scan_test")
  val scan_test = hql("select key, value from scan_test")

  val r_part_scan_test = (0 to 5).map(i => benchmark(part_scan_test))
  val r_scan_test = (0 to 5).map(i => benchmark(scan_test))
  println("Scanning Partition-Based Table")
  r_part_scan_test.foreach(printResult)
  println("Scanning Non-Partition-Based Table")
  r_scan_test.foreach(printResult)

  def printResult(result: (Long, Long)) {
    println(s"Duration: ${result._1} ms Result: ${result._2}")
  }

  def benchmark(srdd: SchemaRDD) = {
    val begin = System.currentTimeMillis()
    val result = srdd.count()
    val end = System.currentTimeMillis()
    ((end - begin), result)
  }
}
```

Author: Cheng Hao <hao.cheng@intel.com>

Closes #1439 from chenghao-intel/hadoop_table_scan and squashes the following commits:

888968f [Cheng Hao] Fix issues in code style
27540ba [Cheng Hao] Fix the TableScan Bug while partition serde differs
40a24a7 [Cheng Hao] Add Unit Test
2b8d89e3
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLLib for machine learning, GraphX for graph processing, and Spark Streaming.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.apache.org/documentation.html. This README file only contains basic setup instructions.

Building Spark

Spark is built on Scala 2.10. To build Spark and its example programs, run:

./sbt/sbt assembly

(You do not need to do this if you downloaded a pre-built package.)

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./sbt/sbt test

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting -Dhadoop.version when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ sbt/sbt -Dhadoop.version=1.2.1 assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ sbt/sbt -Dhadoop.version=2.0.0-mr1-cdh4.2.0 assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set -Pyarn:

# Apache Hadoop 2.0.5-alpha
$ sbt/sbt -Dhadoop.version=2.0.5-alpha -Pyarn assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ sbt/sbt -Dhadoop.version=2.0.0-cdh4.2.0 -Pyarn assembly

# Apache Hadoop 2.2.X and newer
$ sbt/sbt -Dhadoop.version=2.2.0 -Pyarn assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.