Skip to content
Snippets Groups Projects
user avatar
Holden Karau authored
Author: Holden Karau <holden@pigscanfly.ca>

Closes #6927 from holdenk/SPARK-7888-Be-able-to-disable-intercept-in-Linear-Regression-in-ML-package and squashes the following commits:

0ad384c [Holden Karau] Add MiMa excludes
4016fac [Holden Karau] Switch to wild card import, remove extra blank lines
ae5baa8 [Holden Karau] CR feedback, move the fitIntercept down rather than changing ymean and etc above
f34971c [Holden Karau] Fix some more long lines
319bd3f [Holden Karau] Fix long lines
3bb9ee1 [Holden Karau] Update the regression suite tests
7015b9f [Holden Karau] Our code performs the same with R, except we need more than one data point but that seems reasonable
0b0c8c0 [Holden Karau] fix the issue with the sample R code
e2140ba [Holden Karau] Add a test, it fails!
5e84a0b [Holden Karau] Write out thoughts and use the correct trait
91ffc0a [Holden Karau] more murh
006246c [Holden Karau] murp?
2b1111dd
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.