Skip to content
Snippets Groups Projects
user avatar
Liang-Chi Hsieh authored
## What changes were proposed in this pull request?

The base class `SpecificParquetRecordReaderBase` used for vectorized parquet reader will try to get pushed-down filters from the given configuration. This pushed-down filters are used for RowGroups-level filtering. However, we don't set up the filters to push down into the configuration. In other words, the filters are not actually pushed down to do RowGroups-level filtering. This patch is to fix this and tries to set up the filters for pushing down to configuration for the reader.

The benchmark that excludes the time of writing Parquet file:

    test("Benchmark for Parquet") {
      val N = 500 << 12
        withParquetTable((0 until N).map(i => (101, i)), "t") {
          val benchmark = new Benchmark("Parquet reader", N)
          benchmark.addCase("reading Parquet file", 10) { iter =>
            sql("SELECT _1 FROM t where t._1 < 100").collect()
          }
          benchmark.run()
      }
    }

`withParquetTable` in default will run tests for vectorized reader non-vectorized readers. I only let it run vectorized reader.

When we set the block size of parquet as 1024 to have multiple row groups. The benchmark is:

Before this patch:

The retrieved row groups: 8063

    Java HotSpot(TM) 64-Bit Server VM 1.8.0_71-b15 on Linux 3.19.0-25-generic
    Intel(R) Core(TM) i7-5557U CPU  3.10GHz
    Parquet reader:                          Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
    ------------------------------------------------------------------------------------------------
    reading Parquet file                           825 / 1233          2.5         402.6       1.0X

After this patch:

The retrieved row groups: 0

    Java HotSpot(TM) 64-Bit Server VM 1.8.0_71-b15 on Linux 3.19.0-25-generic
    Intel(R) Core(TM) i7-5557U CPU  3.10GHz
    Parquet reader:                          Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
    ------------------------------------------------------------------------------------------------
    reading Parquet file                           306 /  503          6.7         149.6       1.0X

Next, I run the benchmark for non-pushdown case using the same benchmark code but with disabled pushdown configuration. This time the parquet block size is default value.

Before this patch:

    Java HotSpot(TM) 64-Bit Server VM 1.8.0_71-b15 on Linux 3.19.0-25-generic
    Intel(R) Core(TM) i7-5557U CPU  3.10GHz
    Parquet reader:                          Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
    ------------------------------------------------------------------------------------------------
    reading Parquet file                           136 /  238         15.0          66.5       1.0X

After this patch:

    Java HotSpot(TM) 64-Bit Server VM 1.8.0_71-b15 on Linux 3.19.0-25-generic
    Intel(R) Core(TM) i7-5557U CPU  3.10GHz
    Parquet reader:                          Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
    ------------------------------------------------------------------------------------------------
    reading Parquet file                           124 /  193         16.5          60.7       1.0X

For non-pushdown case, from the results, I think this patch doesn't affect normal code path.

I've manually output the `totalRowCount` in `SpecificParquetRecordReaderBase` to see if this patch actually filter the row-groups. When running the above benchmark:

After this patch:
    `totalRowCount = 0`

Before this patch:
    `totalRowCount = 1024000`

## How was this patch tested?
Existing tests should be passed.

Author: Liang-Chi Hsieh <simonh@tw.ibm.com>

Closes #13701 from viirya/vectorized-reader-push-down-filter2.
19af298b
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark". For developing Spark using an IDE, see Eclipse and IntelliJ.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.