Skip to content
Snippets Groups Projects
user avatar
Liquan Pei authored
mengxr
Added PySpark support for Word2Vec
Change list
(1) PySpark support for Word2Vec
(2) SerDe support of string sequence both on python side and JVM side
(3) Test for SerDe of string sequence on JVM side

Author: Liquan Pei <liquanpei@gmail.com>

Closes #2356 from Ishiihara/Word2Vec-python and squashes the following commits:

476ea34 [Liquan Pei] style fixes
b13a0b9 [Liquan Pei] resolve merge conflicts and minor fixes
8671eba [Liquan Pei] Merge remote-tracking branch 'upstream/master' into Word2Vec-python
daf88a6 [Liquan Pei] modification according to feedback
a73fa19 [Liquan Pei] clean up
3d8007b [Liquan Pei] fix findSynonyms for vector
1bdcd2e [Liquan Pei] minor fixes
cdef9f4 [Liquan Pei] add missing comments
b7447eb [Liquan Pei] modify according to feedback
b9a7383 [Liquan Pei] cache words RDD in fit
89490bf [Liquan Pei] add tests and Word2VecModelWrapper
78bbb53 [Liquan Pei] use pickle for seq string SerDe
a264b08 [Liquan Pei] Merge remote-tracking branch 'upstream/master' into Word2Vec-python
ca1e5ff [Liquan Pei] fix test
68e7276 [Liquan Pei] minor style fixes
48d5e72 [Liquan Pei] Functionality improvement
0ad3ac1 [Liquan Pei] minor fix
c867fdf [Liquan Pei] add Word2Vec to pyspark
098c7344
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run all automated tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.