diff --git a/python/pyspark/ml/common.py b/python/pyspark/ml/common.py index 256e91e14165e61da436b019bbf5c062d5b14c94..7d449aaccb44fde533edd45e9b60732e02751c66 100644 --- a/python/pyspark/ml/common.py +++ b/python/pyspark/ml/common.py @@ -63,7 +63,7 @@ def _to_java_object_rdd(rdd): RDD is serialized in batch or not. """ rdd = rdd._reserialize(AutoBatchedSerializer(PickleSerializer())) - return rdd.ctx._jvm.MLSerDe.pythonToJava(rdd._jrdd, True) + return rdd.ctx._jvm.org.apache.spark.ml.python.MLSerDe.pythonToJava(rdd._jrdd, True) def _py2java(sc, obj): @@ -82,7 +82,7 @@ def _py2java(sc, obj): pass else: data = bytearray(PickleSerializer().dumps(obj)) - obj = sc._jvm.MLSerDe.loads(data) + obj = sc._jvm.org.apache.spark.ml.python.MLSerDe.loads(data) return obj @@ -95,17 +95,17 @@ def _java2py(sc, r, encoding="bytes"): clsName = 'JavaRDD' if clsName == 'JavaRDD': - jrdd = sc._jvm.MLSerDe.javaToPython(r) + jrdd = sc._jvm.org.apache.spark.ml.python.MLSerDe.javaToPython(r) return RDD(jrdd, sc) if clsName == 'Dataset': return DataFrame(r, SQLContext.getOrCreate(sc)) if clsName in _picklable_classes: - r = sc._jvm.MLSerDe.dumps(r) + r = sc._jvm.org.apache.spark.ml.python.MLSerDe.dumps(r) elif isinstance(r, (JavaArray, JavaList)): try: - r = sc._jvm.MLSerDe.dumps(r) + r = sc._jvm.org.apache.spark.ml.python.MLSerDe.dumps(r) except Py4JJavaError: pass # not pickable diff --git a/python/pyspark/ml/tests.py b/python/pyspark/ml/tests.py index 981ed9dda042c8d15215ce75926a00ae06e1a51c..24efce812b3b3759bda6291d6fd33844a2430c47 100755 --- a/python/pyspark/ml/tests.py +++ b/python/pyspark/ml/tests.py @@ -1195,12 +1195,12 @@ class VectorTests(MLlibTestCase): def _test_serialize(self, v): self.assertEqual(v, ser.loads(ser.dumps(v))) - jvec = self.sc._jvm.MLSerDe.loads(bytearray(ser.dumps(v))) - nv = ser.loads(bytes(self.sc._jvm.MLSerDe.dumps(jvec))) + jvec = self.sc._jvm.org.apache.spark.ml.python.MLSerDe.loads(bytearray(ser.dumps(v))) + nv = ser.loads(bytes(self.sc._jvm.org.apache.spark.ml.python.MLSerDe.dumps(jvec))) self.assertEqual(v, nv) vs = [v] * 100 - jvecs = self.sc._jvm.MLSerDe.loads(bytearray(ser.dumps(vs))) - nvs = ser.loads(bytes(self.sc._jvm.MLSerDe.dumps(jvecs))) + jvecs = self.sc._jvm.org.apache.spark.ml.python.MLSerDe.loads(bytearray(ser.dumps(vs))) + nvs = ser.loads(bytes(self.sc._jvm.org.apache.spark.ml.python.MLSerDe.dumps(jvecs))) self.assertEqual(vs, nvs) def test_serialize(self): diff --git a/python/pyspark/mllib/clustering.py b/python/pyspark/mllib/clustering.py index 95f7278dc64ce06e99d9e6070b139a89efa71845..93a0b64569b13dfb41dc86df6e03ce292f131d68 100644 --- a/python/pyspark/mllib/clustering.py +++ b/python/pyspark/mllib/clustering.py @@ -507,7 +507,7 @@ class GaussianMixtureModel(JavaModelWrapper, JavaSaveable, JavaLoader): Path to where the model is stored. """ model = cls._load_java(sc, path) - wrapper = sc._jvm.GaussianMixtureModelWrapper(model) + wrapper = sc._jvm.org.apache.spark.mllib.api.python.GaussianMixtureModelWrapper(model) return cls(wrapper) @@ -638,7 +638,8 @@ class PowerIterationClusteringModel(JavaModelWrapper, JavaSaveable, JavaLoader): Load a model from the given path. """ model = cls._load_java(sc, path) - wrapper = sc._jvm.PowerIterationClusteringModelWrapper(model) + wrapper =\ + sc._jvm.org.apache.spark.mllib.api.python.PowerIterationClusteringModelWrapper(model) return PowerIterationClusteringModel(wrapper) diff --git a/python/pyspark/mllib/common.py b/python/pyspark/mllib/common.py index 31afdf576b677bd8ab47a85b36bda3254b6aa5cb..21f0e09ea7742dc4949e4ef376723187e748144b 100644 --- a/python/pyspark/mllib/common.py +++ b/python/pyspark/mllib/common.py @@ -66,7 +66,7 @@ def _to_java_object_rdd(rdd): RDD is serialized in batch or not. """ rdd = rdd._reserialize(AutoBatchedSerializer(PickleSerializer())) - return rdd.ctx._jvm.SerDe.pythonToJava(rdd._jrdd, True) + return rdd.ctx._jvm.org.apache.spark.mllib.api.python.SerDe.pythonToJava(rdd._jrdd, True) def _py2java(sc, obj): @@ -85,7 +85,7 @@ def _py2java(sc, obj): pass else: data = bytearray(PickleSerializer().dumps(obj)) - obj = sc._jvm.SerDe.loads(data) + obj = sc._jvm.org.apache.spark.mllib.api.python.SerDe.loads(data) return obj @@ -98,17 +98,17 @@ def _java2py(sc, r, encoding="bytes"): clsName = 'JavaRDD' if clsName == 'JavaRDD': - jrdd = sc._jvm.SerDe.javaToPython(r) + jrdd = sc._jvm.org.apache.spark.mllib.api.python.SerDe.javaToPython(r) return RDD(jrdd, sc) if clsName == 'Dataset': return DataFrame(r, SQLContext.getOrCreate(sc)) if clsName in _picklable_classes: - r = sc._jvm.SerDe.dumps(r) + r = sc._jvm.org.apache.spark.mllib.api.python.SerDe.dumps(r) elif isinstance(r, (JavaArray, JavaList)): try: - r = sc._jvm.SerDe.dumps(r) + r = sc._jvm.org.apache.spark.mllib.api.python.SerDe.dumps(r) except Py4JJavaError: pass # not pickable diff --git a/python/pyspark/mllib/feature.py b/python/pyspark/mllib/feature.py index e31c75c1e8675dffd5214622f4ae374041e285c8..aef91a8ddc1f1e79a1a3dc7341b7ea46f2e4206a 100644 --- a/python/pyspark/mllib/feature.py +++ b/python/pyspark/mllib/feature.py @@ -553,7 +553,7 @@ class Word2VecModel(JavaVectorTransformer, JavaSaveable, JavaLoader): """ jmodel = sc._jvm.org.apache.spark.mllib.feature \ .Word2VecModel.load(sc._jsc.sc(), path) - model = sc._jvm.Word2VecModelWrapper(jmodel) + model = sc._jvm.org.apache.spark.mllib.api.python.Word2VecModelWrapper(jmodel) return Word2VecModel(model) diff --git a/python/pyspark/mllib/fpm.py b/python/pyspark/mllib/fpm.py index ab4066f7d68bae1a09341535f296050ba9fa3356..fb226e84e5d501615dc76dadd9c6bef77aed2a6c 100644 --- a/python/pyspark/mllib/fpm.py +++ b/python/pyspark/mllib/fpm.py @@ -64,7 +64,7 @@ class FPGrowthModel(JavaModelWrapper, JavaSaveable, JavaLoader): Load a model from the given path. """ model = cls._load_java(sc, path) - wrapper = sc._jvm.FPGrowthModelWrapper(model) + wrapper = sc._jvm.org.apache.spark.mllib.api.python.FPGrowthModelWrapper(model) return FPGrowthModel(wrapper) diff --git a/python/pyspark/mllib/recommendation.py b/python/pyspark/mllib/recommendation.py index 7e60255d43eade63b2b0624c0f7260e6422d58e3..732300ee9c2c9c757e5cd41e64dcb7627a8ceaf0 100644 --- a/python/pyspark/mllib/recommendation.py +++ b/python/pyspark/mllib/recommendation.py @@ -207,7 +207,7 @@ class MatrixFactorizationModel(JavaModelWrapper, JavaSaveable, JavaLoader): def load(cls, sc, path): """Load a model from the given path""" model = cls._load_java(sc, path) - wrapper = sc._jvm.MatrixFactorizationModelWrapper(model) + wrapper = sc._jvm.org.apache.spark.mllib.api.python.MatrixFactorizationModelWrapper(model) return MatrixFactorizationModel(wrapper) diff --git a/python/pyspark/mllib/tests.py b/python/pyspark/mllib/tests.py index 72fa8b5f3d4772bda553f76c81529db8dbc121f6..99bf50b5a1640447326956d1ce960b2f30ef0d72 100644 --- a/python/pyspark/mllib/tests.py +++ b/python/pyspark/mllib/tests.py @@ -150,12 +150,12 @@ class VectorTests(MLlibTestCase): def _test_serialize(self, v): self.assertEqual(v, ser.loads(ser.dumps(v))) - jvec = self.sc._jvm.SerDe.loads(bytearray(ser.dumps(v))) - nv = ser.loads(bytes(self.sc._jvm.SerDe.dumps(jvec))) + jvec = self.sc._jvm.org.apache.spark.mllib.api.python.SerDe.loads(bytearray(ser.dumps(v))) + nv = ser.loads(bytes(self.sc._jvm.org.apache.spark.mllib.api.python.SerDe.dumps(jvec))) self.assertEqual(v, nv) vs = [v] * 100 - jvecs = self.sc._jvm.SerDe.loads(bytearray(ser.dumps(vs))) - nvs = ser.loads(bytes(self.sc._jvm.SerDe.dumps(jvecs))) + jvecs = self.sc._jvm.org.apache.spark.mllib.api.python.SerDe.loads(bytearray(ser.dumps(vs))) + nvs = ser.loads(bytes(self.sc._jvm.org.apache.spark.mllib.api.python.SerDe.dumps(jvecs))) self.assertEqual(vs, nvs) def test_serialize(self): @@ -1650,8 +1650,8 @@ class ALSTests(MLlibTestCase): def test_als_ratings_serialize(self): r = Rating(7, 1123, 3.14) - jr = self.sc._jvm.SerDe.loads(bytearray(ser.dumps(r))) - nr = ser.loads(bytes(self.sc._jvm.SerDe.dumps(jr))) + jr = self.sc._jvm.org.apache.spark.mllib.api.python.SerDe.loads(bytearray(ser.dumps(r))) + nr = ser.loads(bytes(self.sc._jvm.org.apache.spark.mllib.api.python.SerDe.dumps(jr))) self.assertEqual(r.user, nr.user) self.assertEqual(r.product, nr.product) self.assertAlmostEqual(r.rating, nr.rating, 2) @@ -1659,7 +1659,8 @@ class ALSTests(MLlibTestCase): def test_als_ratings_id_long_error(self): r = Rating(1205640308657491975, 50233468418, 1.0) # rating user id exceeds max int value, should fail when pickled - self.assertRaises(Py4JJavaError, self.sc._jvm.SerDe.loads, bytearray(ser.dumps(r))) + self.assertRaises(Py4JJavaError, self.sc._jvm.org.apache.spark.mllib.api.python.SerDe.loads, + bytearray(ser.dumps(r))) class HashingTFTest(MLlibTestCase):