From f5e10a34e644edf3cbce9a7714d31bc433f3ccbd Mon Sep 17 00:00:00 2001 From: WeichenXu <weichen.xu@databricks.com> Date: Thu, 31 Aug 2017 16:25:10 -0700 Subject: [PATCH] [SPARK-21862][ML] Add overflow check in PCA ## What changes were proposed in this pull request? add overflow check in PCA, otherwise it is possible to throw `NegativeArraySizeException` when `k` and `numFeatures` are too large. The overflow checking formula is here: https://github.com/scalanlp/breeze/blob/master/math/src/main/scala/breeze/linalg/functions/svd.scala#L87 ## How was this patch tested? N/A Author: WeichenXu <weichen.xu@databricks.com> Closes #19078 from WeichenXu123/SVD_overflow_check. --- .../org/apache/spark/mllib/feature/PCA.scala | 19 +++++++++++++++++++ .../apache/spark/mllib/feature/PCASuite.scala | 6 ++++++ 2 files changed, 25 insertions(+) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/feature/PCA.scala b/mllib/src/main/scala/org/apache/spark/mllib/feature/PCA.scala index aaecfa8d45..a01503f4b8 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/feature/PCA.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/feature/PCA.scala @@ -44,6 +44,11 @@ class PCA @Since("1.4.0") (@Since("1.4.0") val k: Int) { require(k <= numFeatures, s"source vector size $numFeatures must be no less than k=$k") + require(PCAUtil.memoryCost(k, numFeatures) < Int.MaxValue, + "The param k and numFeatures is too large for SVD computation. " + + "Try reducing the parameter k for PCA, or reduce the input feature " + + "vector dimension to make this tractable.") + val mat = new RowMatrix(sources) val (pc, explainedVariance) = mat.computePrincipalComponentsAndExplainedVariance(k) val densePC = pc match { @@ -110,3 +115,17 @@ class PCAModel private[spark] ( } } } + +private[feature] object PCAUtil { + + // This memory cost formula is from breeze code: + // https://github.com/scalanlp/breeze/blob/ + // 6e541be066d547a097f5089165cd7c38c3ca276d/math/src/main/scala/breeze/linalg/ + // functions/svd.scala#L87 + def memoryCost(k: Int, numFeatures: Int): Long = { + 3L * math.min(k, numFeatures) * math.min(k, numFeatures) + + math.max(math.max(k, numFeatures), 4L * math.min(k, numFeatures) + * math.min(k, numFeatures) + 4L * math.min(k, numFeatures)) + } + +} diff --git a/mllib/src/test/scala/org/apache/spark/mllib/feature/PCASuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/feature/PCASuite.scala index 2f90afdcee..8eab12416a 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/feature/PCASuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/feature/PCASuite.scala @@ -48,4 +48,10 @@ class PCASuite extends SparkFunSuite with MLlibTestSparkContext { } assert(pca.explainedVariance ~== explainedVariance relTol 1e-8) } + + test("memory cost computation") { + assert(PCAUtil.memoryCost(10, 100) < Int.MaxValue) + // check overflowing + assert(PCAUtil.memoryCost(40000, 60000) > Int.MaxValue) + } } -- GitLab