From f5801e813f3c2573ebaf1af839341489ddd3ec78 Mon Sep 17 00:00:00 2001
From: Michael Armbrust <michael@databricks.com>
Date: Thu, 4 Dec 2014 22:25:21 -0800
Subject: [PATCH] [SPARK-4753][SQL] Use catalyst for partition pruning in
 newParquet.

Author: Michael Armbrust <michael@databricks.com>

Closes #3613 from marmbrus/parquetPartitionPruning and squashes the following commits:

4f138f8 [Michael Armbrust] Use catalyst for partition pruning in newParquet.
---
 .../apache/spark/sql/parquet/newParquet.scala | 58 +++++++++----------
 1 file changed, 28 insertions(+), 30 deletions(-)

diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/newParquet.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/newParquet.scala
index 14f8659f15..2e0c6c51c0 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/newParquet.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/newParquet.scala
@@ -22,6 +22,7 @@ import org.apache.hadoop.fs.{FileStatus, FileSystem, Path}
 import org.apache.hadoop.conf.{Configurable, Configuration}
 import org.apache.hadoop.io.Writable
 import org.apache.hadoop.mapreduce.{JobContext, InputSplit, Job}
+import org.apache.spark.sql.catalyst.expressions.codegen.GeneratePredicate
 
 import parquet.hadoop.ParquetInputFormat
 import parquet.hadoop.util.ContextUtil
@@ -31,8 +32,8 @@ import org.apache.spark.{Partition => SparkPartition, Logging}
 import org.apache.spark.rdd.{NewHadoopPartition, RDD}
 
 import org.apache.spark.sql.{SQLConf, Row, SQLContext}
-import org.apache.spark.sql.catalyst.expressions.{SpecificMutableRow, And, Expression, Attribute}
-import org.apache.spark.sql.catalyst.types.{IntegerType, StructField, StructType}
+import org.apache.spark.sql.catalyst.expressions._
+import org.apache.spark.sql.catalyst.types.{StringType, IntegerType, StructField, StructType}
 import org.apache.spark.sql.sources._
 
 import scala.collection.JavaConversions._
@@ -151,8 +152,6 @@ case class ParquetRelation2(path: String)(@transient val sqlContext: SQLContext)
   override def buildScan(output: Seq[Attribute], predicates: Seq[Expression]): RDD[Row] = {
     // This is mostly a hack so that we can use the existing parquet filter code.
     val requiredColumns = output.map(_.name)
-    // TODO: Parquet filters should be based on data sources API, not catalyst expressions.
-    val filters = DataSourceStrategy.selectFilters(predicates)
 
     val job = new Job(sparkContext.hadoopConfiguration)
     ParquetInputFormat.setReadSupportClass(job, classOf[RowReadSupport])
@@ -160,35 +159,34 @@ case class ParquetRelation2(path: String)(@transient val sqlContext: SQLContext)
 
     val requestedSchema = StructType(requiredColumns.map(schema(_)))
 
-    // TODO: Make folder based partitioning a first class citizen of the Data Sources API.
-    val partitionFilters = filters.collect {
-      case e @ EqualTo(attr, value) if partitionKeys.contains(attr) =>
-        logInfo(s"Parquet scan partition filter: $attr=$value")
-        (p: Partition) => p.partitionValues(attr) == value
-
-      case e @ In(attr, values) if partitionKeys.contains(attr) =>
-        logInfo(s"Parquet scan partition filter: $attr IN ${values.mkString("{", ",", "}")}")
-        val set = values.toSet
-        (p: Partition) => set.contains(p.partitionValues(attr))
-
-      case e @ GreaterThan(attr, value) if partitionKeys.contains(attr) =>
-        logInfo(s"Parquet scan partition filter: $attr > $value")
-        (p: Partition) => p.partitionValues(attr).asInstanceOf[Int] > value.asInstanceOf[Int]
-
-      case e @ GreaterThanOrEqual(attr, value) if partitionKeys.contains(attr) =>
-        logInfo(s"Parquet scan partition filter: $attr >= $value")
-        (p: Partition) => p.partitionValues(attr).asInstanceOf[Int] >= value.asInstanceOf[Int]
+    val partitionKeySet = partitionKeys.toSet
+    val rawPredicate =
+      predicates
+        .filter(_.references.map(_.name).toSet.subsetOf(partitionKeySet))
+        .reduceOption(And)
+        .getOrElse(Literal(true))
+
+    // Translate the predicate so that it reads from the information derived from the
+    // folder structure
+    val castedPredicate = rawPredicate transform {
+      case a: AttributeReference =>
+        val idx = partitionKeys.indexWhere(a.name == _)
+        BoundReference(idx, IntegerType, nullable = true)
+    }
 
-      case e @ LessThan(attr, value) if partitionKeys.contains(attr) =>
-        logInfo(s"Parquet scan partition filter: $attr < $value")
-        (p: Partition) => p.partitionValues(attr).asInstanceOf[Int] < value.asInstanceOf[Int]
+    val inputData = new GenericMutableRow(partitionKeys.size)
+    val pruningCondition = InterpretedPredicate(castedPredicate)
 
-      case e @ LessThanOrEqual(attr, value) if partitionKeys.contains(attr) =>
-        logInfo(s"Parquet scan partition filter: $attr <= $value")
-        (p: Partition) => p.partitionValues(attr).asInstanceOf[Int] <= value.asInstanceOf[Int]
-    }
+    val selectedPartitions =
+      if (partitionKeys.nonEmpty && predicates.nonEmpty) {
+        partitions.filter { part =>
+          inputData(0) = part.partitionValues.values.head
+          pruningCondition(inputData)
+        }
+      } else {
+        partitions
+      }
 
-    val selectedPartitions = partitions.filter(p => partitionFilters.forall(_(p)))
     val fs = FileSystem.get(new java.net.URI(path), sparkContext.hadoopConfiguration)
     val selectedFiles = selectedPartitions.flatMap(_.files).map(f => fs.makeQualified(f.getPath))
     // FileInputFormat cannot handle empty lists.
-- 
GitLab