diff --git a/mllib/src/test/scala/org/apache/spark/ml/PipelineSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/PipelineSuite.scala
index 3b490cdf56018333d911ed2411b239a72f34c0e7..6413ca1f8b19ec4948c6d3a92edfa182f7454da3 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/PipelineSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/PipelineSuite.scala
@@ -36,6 +36,8 @@ import org.apache.spark.sql.types.StructType
 
 class PipelineSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   abstract class MyModel extends Model[MyModel]
 
   test("pipeline") {
@@ -183,12 +185,11 @@ class PipelineSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
   }
 
   test("pipeline validateParams") {
-    val df = spark.createDataFrame(
-      Seq(
-        (1, Vectors.dense(0.0, 1.0, 4.0), 1.0),
-        (2, Vectors.dense(1.0, 0.0, 4.0), 2.0),
-        (3, Vectors.dense(1.0, 0.0, 5.0), 3.0),
-        (4, Vectors.dense(0.0, 0.0, 5.0), 4.0))
+    val df = Seq(
+      (1, Vectors.dense(0.0, 1.0, 4.0), 1.0),
+      (2, Vectors.dense(1.0, 0.0, 4.0), 2.0),
+      (3, Vectors.dense(1.0, 0.0, 5.0), 3.0),
+      (4, Vectors.dense(0.0, 0.0, 5.0), 4.0)
     ).toDF("id", "features", "label")
 
     intercept[IllegalArgumentException] {
diff --git a/mllib/src/test/scala/org/apache/spark/ml/classification/ClassifierSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/classification/ClassifierSuite.scala
index 4db5f03fb00b4506c3f409ccecf0b92098ac906d..de712079329dae730f520db91fd05f9aec5145aa 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/classification/ClassifierSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/classification/ClassifierSuite.scala
@@ -29,12 +29,13 @@ import org.apache.spark.sql.{DataFrame, Dataset}
 
 class ClassifierSuite extends SparkFunSuite with MLlibTestSparkContext {
 
-  test("extractLabeledPoints") {
-    def getTestData(labels: Seq[Double]): DataFrame = {
-      val data = labels.map { label: Double => LabeledPoint(label, Vectors.dense(0.0)) }
-      spark.createDataFrame(data)
-    }
+  import testImplicits._
+
+  private def getTestData(labels: Seq[Double]): DataFrame = {
+    labels.map { label: Double => LabeledPoint(label, Vectors.dense(0.0)) }.toDF()
+  }
 
+  test("extractLabeledPoints") {
     val c = new MockClassifier
     // Valid dataset
     val df0 = getTestData(Seq(0.0, 2.0, 1.0, 5.0))
@@ -70,11 +71,6 @@ class ClassifierSuite extends SparkFunSuite with MLlibTestSparkContext {
   }
 
   test("getNumClasses") {
-    def getTestData(labels: Seq[Double]): DataFrame = {
-      val data = labels.map { label: Double => LabeledPoint(label, Vectors.dense(0.0)) }
-      spark.createDataFrame(data)
-    }
-
     val c = new MockClassifier
     // Valid dataset
     val df0 = getTestData(Seq(0.0, 2.0, 1.0, 5.0))
diff --git a/mllib/src/test/scala/org/apache/spark/ml/classification/DecisionTreeClassifierSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/classification/DecisionTreeClassifierSuite.scala
index 089d30abb5ef94d548e24cca9545d67f01316d0d..c711e7fa9dc677983a1d8bf8f0db953d0ad997f6 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/classification/DecisionTreeClassifierSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/classification/DecisionTreeClassifierSuite.scala
@@ -34,6 +34,7 @@ class DecisionTreeClassifierSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
   import DecisionTreeClassifierSuite.compareAPIs
+  import testImplicits._
 
   private var categoricalDataPointsRDD: RDD[LabeledPoint] = _
   private var orderedLabeledPointsWithLabel0RDD: RDD[LabeledPoint] = _
@@ -345,7 +346,7 @@ class DecisionTreeClassifierSuite
   }
 
   test("Fitting without numClasses in metadata") {
-    val df: DataFrame = spark.createDataFrame(TreeTests.featureImportanceData(sc))
+    val df: DataFrame = TreeTests.featureImportanceData(sc).toDF()
     val dt = new DecisionTreeClassifier().setMaxDepth(1)
     dt.fit(df)
   }
diff --git a/mllib/src/test/scala/org/apache/spark/ml/classification/GBTClassifierSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/classification/GBTClassifierSuite.scala
index 8d588ccfd3545c69bc9e95bfb4cfa557d5909793..3492709677d4ff20d4237dc31cadf1c6c5b20b1d 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/classification/GBTClassifierSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/classification/GBTClassifierSuite.scala
@@ -39,6 +39,7 @@ import org.apache.spark.util.Utils
 class GBTClassifierSuite extends SparkFunSuite with MLlibTestSparkContext
   with DefaultReadWriteTest {
 
+  import testImplicits._
   import GBTClassifierSuite.compareAPIs
 
   // Combinations for estimators, learning rates and subsamplingRate
@@ -134,15 +135,14 @@ class GBTClassifierSuite extends SparkFunSuite with MLlibTestSparkContext
   */
 
   test("Fitting without numClasses in metadata") {
-    val df: DataFrame = spark.createDataFrame(TreeTests.featureImportanceData(sc))
+    val df: DataFrame = TreeTests.featureImportanceData(sc).toDF()
     val gbt = new GBTClassifier().setMaxDepth(1).setMaxIter(1)
     gbt.fit(df)
   }
 
   test("extractLabeledPoints with bad data") {
     def getTestData(labels: Seq[Double]): DataFrame = {
-      val data = labels.map { label: Double => LabeledPoint(label, Vectors.dense(0.0)) }
-      spark.createDataFrame(data)
+      labels.map { label: Double => LabeledPoint(label, Vectors.dense(0.0)) }.toDF()
     }
 
     val gbt = new GBTClassifier().setMaxDepth(1).setMaxIter(1)
diff --git a/mllib/src/test/scala/org/apache/spark/ml/classification/LogisticRegressionSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/classification/LogisticRegressionSuite.scala
index 2623759f24d9111664d56b09a8a3722e602ee709..8451e60144981984d768f43053225b924b276bd5 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/classification/LogisticRegressionSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/classification/LogisticRegressionSuite.scala
@@ -37,6 +37,8 @@ import org.apache.spark.sql.functions.lit
 class LogisticRegressionSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   @transient var smallBinaryDataset: Dataset[_] = _
   @transient var smallMultinomialDataset: Dataset[_] = _
   @transient var binaryDataset: Dataset[_] = _
@@ -46,8 +48,7 @@ class LogisticRegressionSuite
   override def beforeAll(): Unit = {
     super.beforeAll()
 
-    smallBinaryDataset =
-      spark.createDataFrame(generateLogisticInput(1.0, 1.0, nPoints = 100, seed = 42))
+    smallBinaryDataset = generateLogisticInput(1.0, 1.0, nPoints = 100, seed = 42).toDF()
 
     smallMultinomialDataset = {
       val nPoints = 100
@@ -61,7 +62,7 @@ class LogisticRegressionSuite
       val testData = generateMultinomialLogisticInput(
         coefficients, xMean, xVariance, addIntercept = true, nPoints, 42)
 
-      val df = spark.createDataFrame(sc.parallelize(testData, 4))
+      val df = sc.parallelize(testData, 4).toDF()
       df.cache()
       df
     }
@@ -76,7 +77,7 @@ class LogisticRegressionSuite
         generateMultinomialLogisticInput(coefficients, xMean, xVariance,
           addIntercept = true, nPoints, 42)
 
-      spark.createDataFrame(sc.parallelize(testData, 4))
+      sc.parallelize(testData, 4).toDF()
     }
 
     multinomialDataset = {
@@ -91,7 +92,7 @@ class LogisticRegressionSuite
       val testData = generateMultinomialLogisticInput(
         coefficients, xMean, xVariance, addIntercept = true, nPoints, 42)
 
-      val df = spark.createDataFrame(sc.parallelize(testData, 4))
+      val df = sc.parallelize(testData, 4).toDF()
       df.cache()
       df
     }
@@ -430,10 +431,10 @@ class LogisticRegressionSuite
     val model = new LogisticRegressionModel("mLogReg",
       Matrices.dense(3, 2, Array(0.0, 0.0, 0.0, 1.0, 2.0, 3.0)),
       Vectors.dense(0.0, 0.0, 0.0), 3, true)
-    val overFlowData = spark.createDataFrame(Seq(
+    val overFlowData = Seq(
       LabeledPoint(1.0, Vectors.dense(0.0, 1000.0)),
       LabeledPoint(1.0, Vectors.dense(0.0, -1.0))
-    ))
+    ).toDF()
     val results = model.transform(overFlowData).select("rawPrediction", "probability").collect()
 
     // probabilities are correct when margins have to be adjusted
@@ -1795,9 +1796,9 @@ class LogisticRegressionSuite
     val numPoints = 40
     val outlierData = MLTestingUtils.genClassificationInstancesWithWeightedOutliers(spark,
       numClasses, numPoints)
-    val testData = spark.createDataFrame(Array.tabulate[LabeledPoint](numClasses) { i =>
+    val testData = Array.tabulate[LabeledPoint](numClasses) { i =>
       LabeledPoint(i.toDouble, Vectors.dense(i.toDouble))
-    })
+    }.toSeq.toDF()
     val lr = new LogisticRegression().setFamily("binomial").setWeightCol("weight")
     val model = lr.fit(outlierData)
     val results = model.transform(testData).select("label", "prediction").collect()
@@ -1819,9 +1820,9 @@ class LogisticRegressionSuite
     val numPoints = 40
     val outlierData = MLTestingUtils.genClassificationInstancesWithWeightedOutliers(spark,
       numClasses, numPoints)
-    val testData = spark.createDataFrame(Array.tabulate[LabeledPoint](numClasses) { i =>
+    val testData = Array.tabulate[LabeledPoint](numClasses) { i =>
       LabeledPoint(i.toDouble, Vectors.dense(i.toDouble))
-    })
+    }.toSeq.toDF()
     val mlr = new LogisticRegression().setFamily("multinomial").setWeightCol("weight")
     val model = mlr.fit(outlierData)
     val results = model.transform(testData).select("label", "prediction").collect()
@@ -1945,11 +1946,10 @@ class LogisticRegressionSuite
   }
 
   test("multiclass logistic regression with all labels the same") {
-    val constantData = spark.createDataFrame(Seq(
+    val constantData = Seq(
       LabeledPoint(4.0, Vectors.dense(0.0)),
       LabeledPoint(4.0, Vectors.dense(1.0)),
-      LabeledPoint(4.0, Vectors.dense(2.0)))
-    )
+      LabeledPoint(4.0, Vectors.dense(2.0))).toDF()
     val mlr = new LogisticRegression().setFamily("multinomial")
     val model = mlr.fit(constantData)
     val results = model.transform(constantData)
@@ -1961,11 +1961,10 @@ class LogisticRegressionSuite
     }
 
     // force the model to be trained with only one class
-    val constantZeroData = spark.createDataFrame(Seq(
+    val constantZeroData = Seq(
       LabeledPoint(0.0, Vectors.dense(0.0)),
       LabeledPoint(0.0, Vectors.dense(1.0)),
-      LabeledPoint(0.0, Vectors.dense(2.0)))
-    )
+      LabeledPoint(0.0, Vectors.dense(2.0))).toDF()
     val modelZeroLabel = mlr.setFitIntercept(false).fit(constantZeroData)
     val resultsZero = modelZeroLabel.transform(constantZeroData)
     resultsZero.select("rawPrediction", "probability", "prediction").collect().foreach {
@@ -1990,20 +1989,18 @@ class LogisticRegressionSuite
   }
 
   test("compressed storage") {
-    val moreClassesThanFeatures = spark.createDataFrame(Seq(
+    val moreClassesThanFeatures = Seq(
       LabeledPoint(4.0, Vectors.dense(0.0, 0.0, 0.0)),
       LabeledPoint(4.0, Vectors.dense(1.0, 1.0, 1.0)),
-      LabeledPoint(4.0, Vectors.dense(2.0, 2.0, 2.0)))
-    )
+      LabeledPoint(4.0, Vectors.dense(2.0, 2.0, 2.0))).toDF()
     val mlr = new LogisticRegression().setFamily("multinomial")
     val model = mlr.fit(moreClassesThanFeatures)
     assert(model.coefficientMatrix.isInstanceOf[SparseMatrix])
     assert(model.coefficientMatrix.asInstanceOf[SparseMatrix].colPtrs.length === 4)
-    val moreFeaturesThanClasses = spark.createDataFrame(Seq(
+    val moreFeaturesThanClasses = Seq(
       LabeledPoint(1.0, Vectors.dense(0.0, 0.0, 0.0)),
       LabeledPoint(1.0, Vectors.dense(1.0, 1.0, 1.0)),
-      LabeledPoint(1.0, Vectors.dense(2.0, 2.0, 2.0)))
-    )
+      LabeledPoint(1.0, Vectors.dense(2.0, 2.0, 2.0))).toDF()
     val model2 = mlr.fit(moreFeaturesThanClasses)
     assert(model2.coefficientMatrix.isInstanceOf[SparseMatrix])
     assert(model2.coefficientMatrix.asInstanceOf[SparseMatrix].colPtrs.length === 3)
diff --git a/mllib/src/test/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifierSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifierSuite.scala
index e809dd4092afa27882465fe6b6ac48641fffb387..c08cb695806d01c0131118f94ed90dda2e2c1b22 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifierSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifierSuite.scala
@@ -33,16 +33,18 @@ import org.apache.spark.sql.{Dataset, Row}
 class MultilayerPerceptronClassifierSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   @transient var dataset: Dataset[_] = _
 
   override def beforeAll(): Unit = {
     super.beforeAll()
 
-    dataset = spark.createDataFrame(Seq(
-        (Vectors.dense(0.0, 0.0), 0.0),
-        (Vectors.dense(0.0, 1.0), 1.0),
-        (Vectors.dense(1.0, 0.0), 1.0),
-        (Vectors.dense(1.0, 1.0), 0.0))
+    dataset = Seq(
+      (Vectors.dense(0.0, 0.0), 0.0),
+      (Vectors.dense(0.0, 1.0), 1.0),
+      (Vectors.dense(1.0, 0.0), 1.0),
+      (Vectors.dense(1.0, 1.0), 0.0)
     ).toDF("features", "label")
   }
 
@@ -80,11 +82,11 @@ class MultilayerPerceptronClassifierSuite
   }
 
   test("Test setWeights by training restart") {
-    val dataFrame = spark.createDataFrame(Seq(
+    val dataFrame = Seq(
       (Vectors.dense(0.0, 0.0), 0.0),
       (Vectors.dense(0.0, 1.0), 1.0),
       (Vectors.dense(1.0, 0.0), 1.0),
-      (Vectors.dense(1.0, 1.0), 0.0))
+      (Vectors.dense(1.0, 1.0), 0.0)
     ).toDF("features", "label")
     val layers = Array[Int](2, 5, 2)
     val trainer = new MultilayerPerceptronClassifier()
@@ -114,9 +116,9 @@ class MultilayerPerceptronClassifierSuite
     val xMean = Array(5.843, 3.057, 3.758, 1.199)
     val xVariance = Array(0.6856, 0.1899, 3.116, 0.581)
     // the input seed is somewhat magic, to make this test pass
-    val rdd = sc.parallelize(generateMultinomialLogisticInput(
-      coefficients, xMean, xVariance, true, nPoints, 1), 2)
-    val dataFrame = spark.createDataFrame(rdd).toDF("label", "features")
+    val data = generateMultinomialLogisticInput(
+      coefficients, xMean, xVariance, true, nPoints, 1).toDS()
+    val dataFrame = data.toDF("label", "features")
     val numClasses = 3
     val numIterations = 100
     val layers = Array[Int](4, 5, 4, numClasses)
@@ -137,9 +139,9 @@ class MultilayerPerceptronClassifierSuite
       .setNumClasses(numClasses)
     lr.optimizer.setRegParam(0.0)
       .setNumIterations(numIterations)
-    val lrModel = lr.run(rdd.map(OldLabeledPoint.fromML))
+    val lrModel = lr.run(data.rdd.map(OldLabeledPoint.fromML))
     val lrPredictionAndLabels =
-      lrModel.predict(rdd.map(p => OldVectors.fromML(p.features))).zip(rdd.map(_.label))
+      lrModel.predict(data.rdd.map(p => OldVectors.fromML(p.features))).zip(data.rdd.map(_.label))
     // MLP's predictions should not differ a lot from LR's.
     val lrMetrics = new MulticlassMetrics(lrPredictionAndLabels)
     val mlpMetrics = new MulticlassMetrics(mlpPredictionAndLabels)
diff --git a/mllib/src/test/scala/org/apache/spark/ml/classification/NaiveBayesSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/classification/NaiveBayesSuite.scala
index 04c010bd13e1ec15d42975074173c3ec47e79fe4..99099324284dc71b285329c90293e3c483db0b12 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/classification/NaiveBayesSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/classification/NaiveBayesSuite.scala
@@ -35,6 +35,8 @@ import org.apache.spark.sql.{DataFrame, Dataset, Row}
 
 class NaiveBayesSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   @transient var dataset: Dataset[_] = _
 
   override def beforeAll(): Unit = {
@@ -47,7 +49,7 @@ class NaiveBayesSuite extends SparkFunSuite with MLlibTestSparkContext with Defa
       Array(0.10, 0.10, 0.70, 0.10)  // label 2
     ).map(_.map(math.log))
 
-    dataset = spark.createDataFrame(generateNaiveBayesInput(pi, theta, 100, 42))
+    dataset = generateNaiveBayesInput(pi, theta, 100, 42).toDF()
   }
 
   def validatePrediction(predictionAndLabels: DataFrame): Unit = {
@@ -131,16 +133,16 @@ class NaiveBayesSuite extends SparkFunSuite with MLlibTestSparkContext with Defa
     val pi = Vectors.dense(piArray)
     val theta = new DenseMatrix(3, 4, thetaArray.flatten, true)
 
-    val testDataset = spark.createDataFrame(generateNaiveBayesInput(
-      piArray, thetaArray, nPoints, 42, "multinomial"))
+    val testDataset =
+      generateNaiveBayesInput(piArray, thetaArray, nPoints, 42, "multinomial").toDF()
     val nb = new NaiveBayes().setSmoothing(1.0).setModelType("multinomial")
     val model = nb.fit(testDataset)
 
     validateModelFit(pi, theta, model)
     assert(model.hasParent)
 
-    val validationDataset = spark.createDataFrame(generateNaiveBayesInput(
-      piArray, thetaArray, nPoints, 17, "multinomial"))
+    val validationDataset =
+      generateNaiveBayesInput(piArray, thetaArray, nPoints, 17, "multinomial").toDF()
 
     val predictionAndLabels = model.transform(validationDataset).select("prediction", "label")
     validatePrediction(predictionAndLabels)
@@ -161,16 +163,16 @@ class NaiveBayesSuite extends SparkFunSuite with MLlibTestSparkContext with Defa
     val pi = Vectors.dense(piArray)
     val theta = new DenseMatrix(3, 12, thetaArray.flatten, true)
 
-    val testDataset = spark.createDataFrame(generateNaiveBayesInput(
-      piArray, thetaArray, nPoints, 45, "bernoulli"))
+    val testDataset =
+      generateNaiveBayesInput(piArray, thetaArray, nPoints, 45, "bernoulli").toDF()
     val nb = new NaiveBayes().setSmoothing(1.0).setModelType("bernoulli")
     val model = nb.fit(testDataset)
 
     validateModelFit(pi, theta, model)
     assert(model.hasParent)
 
-    val validationDataset = spark.createDataFrame(generateNaiveBayesInput(
-      piArray, thetaArray, nPoints, 20, "bernoulli"))
+    val validationDataset =
+      generateNaiveBayesInput(piArray, thetaArray, nPoints, 20, "bernoulli").toDF()
 
     val predictionAndLabels = model.transform(validationDataset).select("prediction", "label")
     validatePrediction(predictionAndLabels)
diff --git a/mllib/src/test/scala/org/apache/spark/ml/classification/OneVsRestSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/classification/OneVsRestSuite.scala
index 99dd5854ff649d183c20e26d2033673e46ae47f7..3f9bcec427399a5e7e8da76a84829b78c0e33d3e 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/classification/OneVsRestSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/classification/OneVsRestSuite.scala
@@ -37,6 +37,8 @@ import org.apache.spark.sql.types.Metadata
 
 class OneVsRestSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   @transient var dataset: Dataset[_] = _
   @transient var rdd: RDD[LabeledPoint] = _
 
@@ -55,7 +57,7 @@ class OneVsRestSuite extends SparkFunSuite with MLlibTestSparkContext with Defau
     val xVariance = Array(0.6856, 0.1899, 3.116, 0.581)
     rdd = sc.parallelize(generateMultinomialLogisticInput(
       coefficients, xMean, xVariance, true, nPoints, 42), 2)
-    dataset = spark.createDataFrame(rdd)
+    dataset = rdd.toDF()
   }
 
   test("params") {
diff --git a/mllib/src/test/scala/org/apache/spark/ml/classification/RandomForestClassifierSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/classification/RandomForestClassifierSuite.scala
index 2e99ee157ae953f277004babba25d6df484bc437..44e1585ee514b48d2882e90dff9f28696d3f73a3 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/classification/RandomForestClassifierSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/classification/RandomForestClassifierSuite.scala
@@ -39,6 +39,7 @@ class RandomForestClassifierSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
   import RandomForestClassifierSuite.compareAPIs
+  import testImplicits._
 
   private var orderedLabeledPoints50_1000: RDD[LabeledPoint] = _
   private var orderedLabeledPoints5_20: RDD[LabeledPoint] = _
@@ -158,7 +159,7 @@ class RandomForestClassifierSuite
   }
 
   test("Fitting without numClasses in metadata") {
-    val df: DataFrame = spark.createDataFrame(TreeTests.featureImportanceData(sc))
+    val df: DataFrame = TreeTests.featureImportanceData(sc).toDF()
     val rf = new RandomForestClassifier().setMaxDepth(1).setNumTrees(1)
     rf.fit(df)
   }
diff --git a/mllib/src/test/scala/org/apache/spark/ml/clustering/LDASuite.scala b/mllib/src/test/scala/org/apache/spark/ml/clustering/LDASuite.scala
index ddfa87555427b72e633c46817c1d2cd34e098486..3f39deddf20b40c0b5e599207aea8a7f2493205f 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/clustering/LDASuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/clustering/LDASuite.scala
@@ -62,6 +62,8 @@ object LDASuite {
 
 class LDASuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   val k: Int = 5
   val vocabSize: Int = 30
   @transient var dataset: Dataset[_] = _
@@ -140,8 +142,8 @@ class LDASuite extends SparkFunSuite with MLlibTestSparkContext with DefaultRead
       new LDA().setTopicConcentration(-1.1)
     }
 
-    val dummyDF = spark.createDataFrame(Seq(
-      (1, Vectors.dense(1.0, 2.0)))).toDF("id", "features")
+    val dummyDF = Seq((1, Vectors.dense(1.0, 2.0))).toDF("id", "features")
+
     // validate parameters
     lda.transformSchema(dummyDF.schema)
     lda.setDocConcentration(1.1)
diff --git a/mllib/src/test/scala/org/apache/spark/ml/evaluation/BinaryClassificationEvaluatorSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/evaluation/BinaryClassificationEvaluatorSuite.scala
index 9ee3df5eb5e33affc44839a54f4c42c7e1eabdf5..ede284712b1c063eb864c395d65d45e890d54ca1 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/evaluation/BinaryClassificationEvaluatorSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/evaluation/BinaryClassificationEvaluatorSuite.scala
@@ -26,6 +26,8 @@ import org.apache.spark.mllib.util.MLlibTestSparkContext
 class BinaryClassificationEvaluatorSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   test("params") {
     ParamsSuite.checkParams(new BinaryClassificationEvaluator)
   }
@@ -42,25 +44,25 @@ class BinaryClassificationEvaluatorSuite
     val evaluator = new BinaryClassificationEvaluator()
       .setMetricName("areaUnderPR")
 
-    val vectorDF = spark.createDataFrame(Seq(
+    val vectorDF = Seq(
       (0d, Vectors.dense(12, 2.5)),
       (1d, Vectors.dense(1, 3)),
       (0d, Vectors.dense(10, 2))
-    )).toDF("label", "rawPrediction")
+    ).toDF("label", "rawPrediction")
     assert(evaluator.evaluate(vectorDF) === 1.0)
 
-    val doubleDF = spark.createDataFrame(Seq(
+    val doubleDF = Seq(
       (0d, 0d),
       (1d, 1d),
       (0d, 0d)
-    )).toDF("label", "rawPrediction")
+    ).toDF("label", "rawPrediction")
     assert(evaluator.evaluate(doubleDF) === 1.0)
 
-    val stringDF = spark.createDataFrame(Seq(
+    val stringDF = Seq(
       (0d, "0d"),
       (1d, "1d"),
       (0d, "0d")
-    )).toDF("label", "rawPrediction")
+    ).toDF("label", "rawPrediction")
     val thrown = intercept[IllegalArgumentException] {
       evaluator.evaluate(stringDF)
     }
diff --git a/mllib/src/test/scala/org/apache/spark/ml/evaluation/RegressionEvaluatorSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/evaluation/RegressionEvaluatorSuite.scala
index 42ff8adf6bd6522c875894faf3de85b3e1309d25..c1a156959618ef213a5e9f2b85bf8522e051df7c 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/evaluation/RegressionEvaluatorSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/evaluation/RegressionEvaluatorSuite.scala
@@ -27,6 +27,8 @@ import org.apache.spark.mllib.util.TestingUtils._
 class RegressionEvaluatorSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   test("params") {
     ParamsSuite.checkParams(new RegressionEvaluator)
   }
@@ -42,9 +44,9 @@ class RegressionEvaluatorSuite
      * data.map(x=> x.label + ", " + x.features(0) + ", " + x.features(1))
      *   .saveAsTextFile("path")
      */
-    val dataset = spark.createDataFrame(
-      sc.parallelize(LinearDataGenerator.generateLinearInput(
-        6.3, Array(4.7, 7.2), Array(0.9, -1.3), Array(0.7, 1.2), 100, 42, 0.1), 2).map(_.asML))
+    val dataset = LinearDataGenerator.generateLinearInput(
+      6.3, Array(4.7, 7.2), Array(0.9, -1.3), Array(0.7, 1.2), 100, 42, 0.1)
+      .map(_.asML).toDF()
 
     /**
      * Using the following R code to load the data, train the model and evaluate metrics.
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/BinarizerSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/BinarizerSuite.scala
index 9cb84a6ee9b8750ab8f92dba11c1c394f49a71d5..4455d3521087869e81605d3e9fa9251babdffbd8 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/BinarizerSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/BinarizerSuite.scala
@@ -26,6 +26,8 @@ import org.apache.spark.sql.{DataFrame, Row}
 
 class BinarizerSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   @transient var data: Array[Double] = _
 
   override def beforeAll(): Unit = {
@@ -39,8 +41,7 @@ class BinarizerSuite extends SparkFunSuite with MLlibTestSparkContext with Defau
 
   test("Binarize continuous features with default parameter") {
     val defaultBinarized: Array[Double] = data.map(x => if (x > 0.0) 1.0 else 0.0)
-    val dataFrame: DataFrame = spark.createDataFrame(
-      data.zip(defaultBinarized)).toDF("feature", "expected")
+    val dataFrame: DataFrame = data.zip(defaultBinarized).toSeq.toDF("feature", "expected")
 
     val binarizer: Binarizer = new Binarizer()
       .setInputCol("feature")
@@ -55,8 +56,7 @@ class BinarizerSuite extends SparkFunSuite with MLlibTestSparkContext with Defau
   test("Binarize continuous features with setter") {
     val threshold: Double = 0.2
     val thresholdBinarized: Array[Double] = data.map(x => if (x > threshold) 1.0 else 0.0)
-    val dataFrame: DataFrame = spark.createDataFrame(
-        data.zip(thresholdBinarized)).toDF("feature", "expected")
+    val dataFrame: DataFrame = data.zip(thresholdBinarized).toSeq.toDF("feature", "expected")
 
     val binarizer: Binarizer = new Binarizer()
       .setInputCol("feature")
@@ -71,9 +71,9 @@ class BinarizerSuite extends SparkFunSuite with MLlibTestSparkContext with Defau
 
   test("Binarize vector of continuous features with default parameter") {
     val defaultBinarized: Array[Double] = data.map(x => if (x > 0.0) 1.0 else 0.0)
-    val dataFrame: DataFrame = spark.createDataFrame(Seq(
+    val dataFrame: DataFrame = Seq(
       (Vectors.dense(data), Vectors.dense(defaultBinarized))
-    )).toDF("feature", "expected")
+    ).toDF("feature", "expected")
 
     val binarizer: Binarizer = new Binarizer()
       .setInputCol("feature")
@@ -88,9 +88,9 @@ class BinarizerSuite extends SparkFunSuite with MLlibTestSparkContext with Defau
   test("Binarize vector of continuous features with setter") {
     val threshold: Double = 0.2
     val defaultBinarized: Array[Double] = data.map(x => if (x > threshold) 1.0 else 0.0)
-    val dataFrame: DataFrame = spark.createDataFrame(Seq(
+    val dataFrame: DataFrame = Seq(
       (Vectors.dense(data), Vectors.dense(defaultBinarized))
-    )).toDF("feature", "expected")
+    ).toDF("feature", "expected")
 
     val binarizer: Binarizer = new Binarizer()
       .setInputCol("feature")
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/BucketizerSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/BucketizerSuite.scala
index c7f5093e74740f52f6aeaf2e8767346ac06926f0..87cdceb2673879cf83945a3e6605a46739dfc3dc 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/BucketizerSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/BucketizerSuite.scala
@@ -29,6 +29,8 @@ import org.apache.spark.sql.{DataFrame, Row}
 
 class BucketizerSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   test("params") {
     ParamsSuite.checkParams(new Bucketizer)
   }
@@ -38,8 +40,7 @@ class BucketizerSuite extends SparkFunSuite with MLlibTestSparkContext with Defa
     val splits = Array(-0.5, 0.0, 0.5)
     val validData = Array(-0.5, -0.3, 0.0, 0.2)
     val expectedBuckets = Array(0.0, 0.0, 1.0, 1.0)
-    val dataFrame: DataFrame =
-      spark.createDataFrame(validData.zip(expectedBuckets)).toDF("feature", "expected")
+    val dataFrame: DataFrame = validData.zip(expectedBuckets).toSeq.toDF("feature", "expected")
 
     val bucketizer: Bucketizer = new Bucketizer()
       .setInputCol("feature")
@@ -55,13 +56,13 @@ class BucketizerSuite extends SparkFunSuite with MLlibTestSparkContext with Defa
     // Check for exceptions when using a set of invalid feature values.
     val invalidData1: Array[Double] = Array(-0.9) ++ validData
     val invalidData2 = Array(0.51) ++ validData
-    val badDF1 = spark.createDataFrame(invalidData1.zipWithIndex).toDF("feature", "idx")
+    val badDF1 = invalidData1.zipWithIndex.toSeq.toDF("feature", "idx")
     withClue("Invalid feature value -0.9 was not caught as an invalid feature!") {
       intercept[SparkException] {
         bucketizer.transform(badDF1).collect()
       }
     }
-    val badDF2 = spark.createDataFrame(invalidData2.zipWithIndex).toDF("feature", "idx")
+    val badDF2 = invalidData2.zipWithIndex.toSeq.toDF("feature", "idx")
     withClue("Invalid feature value 0.51 was not caught as an invalid feature!") {
       intercept[SparkException] {
         bucketizer.transform(badDF2).collect()
@@ -73,8 +74,7 @@ class BucketizerSuite extends SparkFunSuite with MLlibTestSparkContext with Defa
     val splits = Array(Double.NegativeInfinity, -0.5, 0.0, 0.5, Double.PositiveInfinity)
     val validData = Array(-0.9, -0.5, -0.3, 0.0, 0.2, 0.5, 0.9)
     val expectedBuckets = Array(0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0)
-    val dataFrame: DataFrame =
-      spark.createDataFrame(validData.zip(expectedBuckets)).toDF("feature", "expected")
+    val dataFrame: DataFrame = validData.zip(expectedBuckets).toSeq.toDF("feature", "expected")
 
     val bucketizer: Bucketizer = new Bucketizer()
       .setInputCol("feature")
@@ -92,8 +92,7 @@ class BucketizerSuite extends SparkFunSuite with MLlibTestSparkContext with Defa
     val splits = Array(Double.NegativeInfinity, -0.5, 0.0, 0.5, Double.PositiveInfinity)
     val validData = Array(-0.9, -0.5, -0.3, 0.0, 0.2, 0.5, 0.9, Double.NaN, Double.NaN, Double.NaN)
     val expectedBuckets = Array(0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0, 4.0)
-    val dataFrame: DataFrame =
-      spark.createDataFrame(validData.zip(expectedBuckets)).toDF("feature", "expected")
+    val dataFrame: DataFrame = validData.zip(expectedBuckets).toSeq.toDF("feature", "expected")
 
     val bucketizer: Bucketizer = new Bucketizer()
       .setInputCol("feature")
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/ChiSqSelectorSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/ChiSqSelectorSuite.scala
index 6b56e4200250c7c3b1820002ff49c1d11ac3dd3e..dfebfc87ea1d3869da0b10b6406e31f39ac97804 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/ChiSqSelectorSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/ChiSqSelectorSuite.scala
@@ -29,8 +29,7 @@ class ChiSqSelectorSuite extends SparkFunSuite with MLlibTestSparkContext
   with DefaultReadWriteTest {
 
   test("Test Chi-Square selector") {
-    val spark = this.spark
-    import spark.implicits._
+    import testImplicits._
     val data = Seq(
       LabeledPoint(0.0, Vectors.sparse(3, Array((0, 8.0), (1, 7.0)))),
       LabeledPoint(1.0, Vectors.sparse(3, Array((1, 9.0), (2, 6.0)))),
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/CountVectorizerSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/CountVectorizerSuite.scala
index 863b66bf497fed657a94baee164d17282c85c357..69d3033bb2189ca478310074bf3884e480df1477 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/CountVectorizerSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/CountVectorizerSuite.scala
@@ -27,6 +27,8 @@ import org.apache.spark.sql.Row
 class CountVectorizerSuite extends SparkFunSuite with MLlibTestSparkContext
   with DefaultReadWriteTest {
 
+  import testImplicits._
+
   test("params") {
     ParamsSuite.checkParams(new CountVectorizer)
     ParamsSuite.checkParams(new CountVectorizerModel(Array("empty")))
@@ -35,7 +37,7 @@ class CountVectorizerSuite extends SparkFunSuite with MLlibTestSparkContext
   private def split(s: String): Seq[String] = s.split("\\s+")
 
   test("CountVectorizerModel common cases") {
-    val df = spark.createDataFrame(Seq(
+    val df = Seq(
       (0, split("a b c d"),
         Vectors.sparse(4, Seq((0, 1.0), (1, 1.0), (2, 1.0), (3, 1.0)))),
       (1, split("a b b c d  a"),
@@ -44,7 +46,7 @@ class CountVectorizerSuite extends SparkFunSuite with MLlibTestSparkContext
       (3, split(""), Vectors.sparse(4, Seq())), // empty string
       (4, split("a notInDict d"),
         Vectors.sparse(4, Seq((0, 1.0), (3, 1.0))))  // with words not in vocabulary
-    )).toDF("id", "words", "expected")
+    ).toDF("id", "words", "expected")
     val cv = new CountVectorizerModel(Array("a", "b", "c", "d"))
       .setInputCol("words")
       .setOutputCol("features")
@@ -55,13 +57,13 @@ class CountVectorizerSuite extends SparkFunSuite with MLlibTestSparkContext
   }
 
   test("CountVectorizer common cases") {
-    val df = spark.createDataFrame(Seq(
+    val df = Seq(
       (0, split("a b c d e"),
         Vectors.sparse(5, Seq((0, 1.0), (1, 1.0), (2, 1.0), (3, 1.0), (4, 1.0)))),
       (1, split("a a a a a a"), Vectors.sparse(5, Seq((0, 6.0)))),
       (2, split("c c"), Vectors.sparse(5, Seq((2, 2.0)))),
       (3, split("d"), Vectors.sparse(5, Seq((3, 1.0)))),
-      (4, split("b b b b b"), Vectors.sparse(5, Seq((1, 5.0)))))
+      (4, split("b b b b b"), Vectors.sparse(5, Seq((1, 5.0))))
     ).toDF("id", "words", "expected")
     val cv = new CountVectorizer()
       .setInputCol("words")
@@ -76,11 +78,11 @@ class CountVectorizerSuite extends SparkFunSuite with MLlibTestSparkContext
   }
 
   test("CountVectorizer vocabSize and minDF") {
-    val df = spark.createDataFrame(Seq(
+    val df = Seq(
       (0, split("a b c d"), Vectors.sparse(2, Seq((0, 1.0), (1, 1.0)))),
       (1, split("a b c"), Vectors.sparse(2, Seq((0, 1.0), (1, 1.0)))),
       (2, split("a b"), Vectors.sparse(2, Seq((0, 1.0), (1, 1.0)))),
-      (3, split("a"), Vectors.sparse(2, Seq((0, 1.0)))))
+      (3, split("a"), Vectors.sparse(2, Seq((0, 1.0))))
     ).toDF("id", "words", "expected")
     val cvModel = new CountVectorizer()
       .setInputCol("words")
@@ -118,9 +120,9 @@ class CountVectorizerSuite extends SparkFunSuite with MLlibTestSparkContext
 
   test("CountVectorizer throws exception when vocab is empty") {
     intercept[IllegalArgumentException] {
-      val df = spark.createDataFrame(Seq(
+      val df = Seq(
         (0, split("a a b b c c")),
-        (1, split("aa bb cc")))
+        (1, split("aa bb cc"))
       ).toDF("id", "words")
       val cvModel = new CountVectorizer()
         .setInputCol("words")
@@ -132,11 +134,11 @@ class CountVectorizerSuite extends SparkFunSuite with MLlibTestSparkContext
   }
 
   test("CountVectorizerModel with minTF count") {
-    val df = spark.createDataFrame(Seq(
+    val df = Seq(
       (0, split("a a a b b c c c d "), Vectors.sparse(4, Seq((0, 3.0), (2, 3.0)))),
       (1, split("c c c c c c"), Vectors.sparse(4, Seq((2, 6.0)))),
       (2, split("a"), Vectors.sparse(4, Seq())),
-      (3, split("e e e e e"), Vectors.sparse(4, Seq())))
+      (3, split("e e e e e"), Vectors.sparse(4, Seq()))
     ).toDF("id", "words", "expected")
 
     // minTF: count
@@ -151,11 +153,11 @@ class CountVectorizerSuite extends SparkFunSuite with MLlibTestSparkContext
   }
 
   test("CountVectorizerModel with minTF freq") {
-    val df = spark.createDataFrame(Seq(
+    val df = Seq(
       (0, split("a a a b b c c c d "), Vectors.sparse(4, Seq((0, 3.0), (2, 3.0)))),
       (1, split("c c c c c c"), Vectors.sparse(4, Seq((2, 6.0)))),
       (2, split("a"), Vectors.sparse(4, Seq((0, 1.0)))),
-      (3, split("e e e e e"), Vectors.sparse(4, Seq())))
+      (3, split("e e e e e"), Vectors.sparse(4, Seq()))
     ).toDF("id", "words", "expected")
 
     // minTF: set frequency
@@ -170,12 +172,12 @@ class CountVectorizerSuite extends SparkFunSuite with MLlibTestSparkContext
   }
 
   test("CountVectorizerModel and CountVectorizer with binary") {
-    val df = spark.createDataFrame(Seq(
+    val df = Seq(
       (0, split("a a a a b b b b c d"),
       Vectors.sparse(4, Seq((0, 1.0), (1, 1.0), (2, 1.0), (3, 1.0)))),
       (1, split("c c c"), Vectors.sparse(4, Seq((2, 1.0)))),
       (2, split("a"), Vectors.sparse(4, Seq((0, 1.0))))
-    )).toDF("id", "words", "expected")
+    ).toDF("id", "words", "expected")
 
     // CountVectorizer test
     val cv = new CountVectorizer()
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/DCTSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/DCTSuite.scala
index c02e9610418bf6ce55dcb19e7b769cfff50a7c1c..8dd3dd75e1be5706ee33ba6007e00de1ed6b7034 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/DCTSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/DCTSuite.scala
@@ -32,6 +32,8 @@ case class DCTTestData(vec: Vector, wantedVec: Vector)
 
 class DCTSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   test("forward transform of discrete cosine matches jTransforms result") {
     val data = Vectors.dense((0 until 128).map(_ => 2D * math.random - 1D).toArray)
     val inverse = false
@@ -57,15 +59,13 @@ class DCTSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultRead
   private def testDCT(data: Vector, inverse: Boolean): Unit = {
     val expectedResultBuffer = data.toArray.clone()
     if (inverse) {
-      (new DoubleDCT_1D(data.size)).inverse(expectedResultBuffer, true)
+      new DoubleDCT_1D(data.size).inverse(expectedResultBuffer, true)
     } else {
-      (new DoubleDCT_1D(data.size)).forward(expectedResultBuffer, true)
+      new DoubleDCT_1D(data.size).forward(expectedResultBuffer, true)
     }
     val expectedResult = Vectors.dense(expectedResultBuffer)
 
-    val dataset = spark.createDataFrame(Seq(
-      DCTTestData(data, expectedResult)
-    ))
+    val dataset = Seq(DCTTestData(data, expectedResult)).toDF()
 
     val transformer = new DCT()
       .setInputCol("vec")
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/HashingTFSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/HashingTFSuite.scala
index 99b800776bb64925c5bd2a31b9c0f8ff4f4b4364..1d14866cc933b033bd14df6ee480af419a08307c 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/HashingTFSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/HashingTFSuite.scala
@@ -29,14 +29,14 @@ import org.apache.spark.util.Utils
 
 class HashingTFSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   test("params") {
     ParamsSuite.checkParams(new HashingTF)
   }
 
   test("hashingTF") {
-    val df = spark.createDataFrame(Seq(
-      (0, "a a b b c d".split(" ").toSeq)
-    )).toDF("id", "words")
+    val df = Seq((0, "a a b b c d".split(" ").toSeq)).toDF("id", "words")
     val n = 100
     val hashingTF = new HashingTF()
       .setInputCol("words")
@@ -54,9 +54,7 @@ class HashingTFSuite extends SparkFunSuite with MLlibTestSparkContext with Defau
   }
 
   test("applying binary term freqs") {
-    val df = spark.createDataFrame(Seq(
-      (0, "a a b c c c".split(" ").toSeq)
-    )).toDF("id", "words")
+    val df = Seq((0, "a a b c c c".split(" ").toSeq)).toDF("id", "words")
     val n = 100
     val hashingTF = new HashingTF()
         .setInputCol("words")
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/IDFSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/IDFSuite.scala
index 09dc8b9b932fd9ddbbc67b4d28971ec8b4968c4a..5325d95526a50005a932ed12b92a848d6a235088 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/IDFSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/IDFSuite.scala
@@ -29,6 +29,8 @@ import org.apache.spark.sql.Row
 
 class IDFSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   def scaleDataWithIDF(dataSet: Array[Vector], model: Vector): Array[Vector] = {
     dataSet.map {
       case data: DenseVector =>
@@ -61,7 +63,7 @@ class IDFSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultRead
     })
     val expected = scaleDataWithIDF(data, idf)
 
-    val df = spark.createDataFrame(data.zip(expected)).toDF("features", "expected")
+    val df = data.zip(expected).toSeq.toDF("features", "expected")
 
     val idfModel = new IDF()
       .setInputCol("features")
@@ -87,7 +89,7 @@ class IDFSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultRead
     })
     val expected = scaleDataWithIDF(data, idf)
 
-    val df = spark.createDataFrame(data.zip(expected)).toDF("features", "expected")
+    val df = data.zip(expected).toSeq.toDF("features", "expected")
 
     val idfModel = new IDF()
       .setInputCol("features")
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/InteractionSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/InteractionSuite.scala
index 3429172a8c9038c761259610c6979d2794c3ce76..54f059e5f143e70ca417f534008a03f32b8127b0 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/InteractionSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/InteractionSuite.scala
@@ -28,6 +28,9 @@ import org.apache.spark.mllib.util.MLlibTestSparkContext
 import org.apache.spark.sql.functions.col
 
 class InteractionSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
+
+  import testImplicits._
+
   test("params") {
     ParamsSuite.checkParams(new Interaction())
   }
@@ -59,11 +62,10 @@ class InteractionSuite extends SparkFunSuite with MLlibTestSparkContext with Def
   }
 
   test("numeric interaction") {
-    val data = spark.createDataFrame(
-      Seq(
-        (2, Vectors.dense(3.0, 4.0)),
-        (1, Vectors.dense(1.0, 5.0)))
-      ).toDF("a", "b")
+    val data = Seq(
+      (2, Vectors.dense(3.0, 4.0)),
+      (1, Vectors.dense(1.0, 5.0))
+    ).toDF("a", "b")
     val groupAttr = new AttributeGroup(
       "b",
       Array[Attribute](
@@ -74,11 +76,10 @@ class InteractionSuite extends SparkFunSuite with MLlibTestSparkContext with Def
       col("b").as("b", groupAttr.toMetadata()))
     val trans = new Interaction().setInputCols(Array("a", "b")).setOutputCol("features")
     val res = trans.transform(df)
-    val expected = spark.createDataFrame(
-      Seq(
-        (2, Vectors.dense(3.0, 4.0), Vectors.dense(6.0, 8.0)),
-        (1, Vectors.dense(1.0, 5.0), Vectors.dense(1.0, 5.0)))
-      ).toDF("a", "b", "features")
+    val expected = Seq(
+      (2, Vectors.dense(3.0, 4.0), Vectors.dense(6.0, 8.0)),
+      (1, Vectors.dense(1.0, 5.0), Vectors.dense(1.0, 5.0))
+    ).toDF("a", "b", "features")
     assert(res.collect() === expected.collect())
     val attrs = AttributeGroup.fromStructField(res.schema("features"))
     val expectedAttrs = new AttributeGroup(
@@ -90,11 +91,10 @@ class InteractionSuite extends SparkFunSuite with MLlibTestSparkContext with Def
   }
 
   test("nominal interaction") {
-    val data = spark.createDataFrame(
-      Seq(
-        (2, Vectors.dense(3.0, 4.0)),
-        (1, Vectors.dense(1.0, 5.0)))
-      ).toDF("a", "b")
+    val data = Seq(
+      (2, Vectors.dense(3.0, 4.0)),
+      (1, Vectors.dense(1.0, 5.0))
+    ).toDF("a", "b")
     val groupAttr = new AttributeGroup(
       "b",
       Array[Attribute](
@@ -106,11 +106,10 @@ class InteractionSuite extends SparkFunSuite with MLlibTestSparkContext with Def
       col("b").as("b", groupAttr.toMetadata()))
     val trans = new Interaction().setInputCols(Array("a", "b")).setOutputCol("features")
     val res = trans.transform(df)
-    val expected = spark.createDataFrame(
-      Seq(
-        (2, Vectors.dense(3.0, 4.0), Vectors.dense(0, 0, 0, 0, 3, 4)),
-        (1, Vectors.dense(1.0, 5.0), Vectors.dense(0, 0, 1, 5, 0, 0)))
-      ).toDF("a", "b", "features")
+    val expected = Seq(
+      (2, Vectors.dense(3.0, 4.0), Vectors.dense(0, 0, 0, 0, 3, 4)),
+      (1, Vectors.dense(1.0, 5.0), Vectors.dense(0, 0, 1, 5, 0, 0))
+    ).toDF("a", "b", "features")
     assert(res.collect() === expected.collect())
     val attrs = AttributeGroup.fromStructField(res.schema("features"))
     val expectedAttrs = new AttributeGroup(
@@ -126,10 +125,9 @@ class InteractionSuite extends SparkFunSuite with MLlibTestSparkContext with Def
   }
 
   test("default attr names") {
-    val data = spark.createDataFrame(
-      Seq(
+    val data = Seq(
         (2, Vectors.dense(0.0, 4.0), 1.0),
-        (1, Vectors.dense(1.0, 5.0), 10.0))
+        (1, Vectors.dense(1.0, 5.0), 10.0)
       ).toDF("a", "b", "c")
     val groupAttr = new AttributeGroup(
       "b",
@@ -142,11 +140,10 @@ class InteractionSuite extends SparkFunSuite with MLlibTestSparkContext with Def
       col("c").as("c", NumericAttribute.defaultAttr.toMetadata()))
     val trans = new Interaction().setInputCols(Array("a", "b", "c")).setOutputCol("features")
     val res = trans.transform(df)
-    val expected = spark.createDataFrame(
-      Seq(
-        (2, Vectors.dense(0.0, 4.0), 1.0, Vectors.dense(0, 0, 0, 0, 0, 0, 1, 0, 4)),
-        (1, Vectors.dense(1.0, 5.0), 10.0, Vectors.dense(0, 0, 0, 0, 10, 50, 0, 0, 0)))
-      ).toDF("a", "b", "c", "features")
+    val expected = Seq(
+      (2, Vectors.dense(0.0, 4.0), 1.0, Vectors.dense(0, 0, 0, 0, 0, 0, 1, 0, 4)),
+      (1, Vectors.dense(1.0, 5.0), 10.0, Vectors.dense(0, 0, 0, 0, 10, 50, 0, 0, 0))
+    ).toDF("a", "b", "c", "features")
     assert(res.collect() === expected.collect())
     val attrs = AttributeGroup.fromStructField(res.schema("features"))
     val expectedAttrs = new AttributeGroup(
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/MaxAbsScalerSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/MaxAbsScalerSuite.scala
index d6400ee02f95105b27d8d69d5d1af34daca139ad..a12174493b8674bf457dba6401711923bae1f0c0 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/MaxAbsScalerSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/MaxAbsScalerSuite.scala
@@ -23,6 +23,9 @@ import org.apache.spark.mllib.util.MLlibTestSparkContext
 import org.apache.spark.sql.Row
 
 class MaxAbsScalerSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
+
+  import testImplicits._
+
   test("MaxAbsScaler fit basic case") {
     val data = Array(
       Vectors.dense(1, 0, 100),
@@ -36,7 +39,7 @@ class MaxAbsScalerSuite extends SparkFunSuite with MLlibTestSparkContext with De
       Vectors.sparse(3, Array(0, 2), Array(-1, -1)),
       Vectors.sparse(3, Array(0), Array(-0.75)))
 
-    val df = spark.createDataFrame(data.zip(expected)).toDF("features", "expected")
+    val df = data.zip(expected).toSeq.toDF("features", "expected")
     val scaler = new MaxAbsScaler()
       .setInputCol("features")
       .setOutputCol("scaled")
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/MinMaxScalerSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/MinMaxScalerSuite.scala
index 9f376b70035c59edceeb23bb68048ee8c3be1008..b79eeb2d75ef0a0468ce741094622f227b54504e 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/MinMaxScalerSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/MinMaxScalerSuite.scala
@@ -25,6 +25,8 @@ import org.apache.spark.sql.Row
 
 class MinMaxScalerSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   test("MinMaxScaler fit basic case") {
     val data = Array(
       Vectors.dense(1, 0, Long.MinValue),
@@ -38,7 +40,7 @@ class MinMaxScalerSuite extends SparkFunSuite with MLlibTestSparkContext with De
       Vectors.sparse(3, Array(0, 2), Array(5, 5)),
       Vectors.sparse(3, Array(0), Array(-2.5)))
 
-    val df = spark.createDataFrame(data.zip(expected)).toDF("features", "expected")
+    val df = data.zip(expected).toSeq.toDF("features", "expected")
     val scaler = new MinMaxScaler()
       .setInputCol("features")
       .setOutputCol("scaled")
@@ -57,14 +59,13 @@ class MinMaxScalerSuite extends SparkFunSuite with MLlibTestSparkContext with De
 
   test("MinMaxScaler arguments max must be larger than min") {
     withClue("arguments max must be larger than min") {
-      val dummyDF = spark.createDataFrame(Seq(
-        (1, Vectors.dense(1.0, 2.0)))).toDF("id", "feature")
+      val dummyDF = Seq((1, Vectors.dense(1.0, 2.0))).toDF("id", "features")
       intercept[IllegalArgumentException] {
-        val scaler = new MinMaxScaler().setMin(10).setMax(0).setInputCol("feature")
+        val scaler = new MinMaxScaler().setMin(10).setMax(0).setInputCol("features")
         scaler.transformSchema(dummyDF.schema)
       }
       intercept[IllegalArgumentException] {
-        val scaler = new MinMaxScaler().setMin(0).setMax(0).setInputCol("feature")
+        val scaler = new MinMaxScaler().setMin(0).setMax(0).setInputCol("features")
         scaler.transformSchema(dummyDF.schema)
       }
     }
@@ -104,7 +105,7 @@ class MinMaxScalerSuite extends SparkFunSuite with MLlibTestSparkContext with De
       Vectors.dense(-1.0, Double.NaN, -5.0, -5.0),
       Vectors.dense(5.0, 0.0, 5.0, Double.NaN))
 
-    val df = spark.createDataFrame(data.zip(expected)).toDF("features", "expected")
+    val df = data.zip(expected).toSeq.toDF("features", "expected")
     val scaler = new MinMaxScaler()
       .setInputCol("features")
       .setOutputCol("scaled")
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/NGramSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/NGramSuite.scala
index e5288d9259d3c2e00ffd701c261d84fcce99f688..d4975c0b4e20ed57452d4b092533c99b109b9fb2 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/NGramSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/NGramSuite.scala
@@ -28,17 +28,18 @@ import org.apache.spark.sql.{Dataset, Row}
 case class NGramTestData(inputTokens: Array[String], wantedNGrams: Array[String])
 
 class NGramSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
+
   import org.apache.spark.ml.feature.NGramSuite._
+  import testImplicits._
 
   test("default behavior yields bigram features") {
     val nGram = new NGram()
       .setInputCol("inputTokens")
       .setOutputCol("nGrams")
-    val dataset = spark.createDataFrame(Seq(
-      NGramTestData(
-        Array("Test", "for", "ngram", "."),
-        Array("Test for", "for ngram", "ngram .")
-    )))
+    val dataset = Seq(NGramTestData(
+      Array("Test", "for", "ngram", "."),
+      Array("Test for", "for ngram", "ngram .")
+    )).toDF()
     testNGram(nGram, dataset)
   }
 
@@ -47,11 +48,10 @@ class NGramSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultRe
       .setInputCol("inputTokens")
       .setOutputCol("nGrams")
       .setN(4)
-    val dataset = spark.createDataFrame(Seq(
-      NGramTestData(
-        Array("a", "b", "c", "d", "e"),
-        Array("a b c d", "b c d e")
-      )))
+    val dataset = Seq(NGramTestData(
+      Array("a", "b", "c", "d", "e"),
+      Array("a b c d", "b c d e")
+    )).toDF()
     testNGram(nGram, dataset)
   }
 
@@ -60,11 +60,7 @@ class NGramSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultRe
       .setInputCol("inputTokens")
       .setOutputCol("nGrams")
       .setN(4)
-    val dataset = spark.createDataFrame(Seq(
-      NGramTestData(
-        Array(),
-        Array()
-      )))
+    val dataset = Seq(NGramTestData(Array(), Array())).toDF()
     testNGram(nGram, dataset)
   }
 
@@ -73,11 +69,10 @@ class NGramSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultRe
       .setInputCol("inputTokens")
       .setOutputCol("nGrams")
       .setN(6)
-    val dataset = spark.createDataFrame(Seq(
-      NGramTestData(
-        Array("a", "b", "c", "d", "e"),
-        Array()
-      )))
+    val dataset = Seq(NGramTestData(
+      Array("a", "b", "c", "d", "e"),
+      Array()
+    )).toDF()
     testNGram(nGram, dataset)
   }
 
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/NormalizerSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/NormalizerSuite.scala
index b692831714466bc046f2546c38861aece9b250e8..c75027fb4553d93a88ef1823abbf9bebdca6cfb0 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/NormalizerSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/NormalizerSuite.scala
@@ -27,6 +27,8 @@ import org.apache.spark.sql.{DataFrame, Row}
 
 class NormalizerSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   @transient var data: Array[Vector] = _
   @transient var dataFrame: DataFrame = _
   @transient var normalizer: Normalizer = _
@@ -61,7 +63,7 @@ class NormalizerSuite extends SparkFunSuite with MLlibTestSparkContext with Defa
       Vectors.sparse(3, Seq())
     )
 
-    dataFrame = spark.createDataFrame(sc.parallelize(data, 2).map(NormalizerSuite.FeatureData))
+    dataFrame = data.map(NormalizerSuite.FeatureData).toSeq.toDF()
     normalizer = new Normalizer()
       .setInputCol("features")
       .setOutputCol("normalized_features")
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/OneHotEncoderSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/OneHotEncoderSuite.scala
index d41eeec1329c504c3d2650a792b2b51eb8834360..c44c6813a94be01a5db15f3abbf5c367981c56c2 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/OneHotEncoderSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/OneHotEncoderSuite.scala
@@ -30,9 +30,11 @@ import org.apache.spark.sql.types._
 class OneHotEncoderSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   def stringIndexed(): DataFrame = {
-    val data = sc.parallelize(Seq((0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c")), 2)
-    val df = spark.createDataFrame(data).toDF("id", "label")
+    val data = Seq((0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c"))
+    val df = data.toDF("id", "label")
     val indexer = new StringIndexer()
       .setInputCol("label")
       .setOutputCol("labelIndex")
@@ -83,7 +85,7 @@ class OneHotEncoderSuite
 
   test("input column with ML attribute") {
     val attr = NominalAttribute.defaultAttr.withValues("small", "medium", "large")
-    val df = spark.createDataFrame(Seq(0.0, 1.0, 2.0, 1.0).map(Tuple1.apply)).toDF("size")
+    val df = Seq(0.0, 1.0, 2.0, 1.0).map(Tuple1.apply).toDF("size")
       .select(col("size").as("size", attr.toMetadata()))
     val encoder = new OneHotEncoder()
       .setInputCol("size")
@@ -96,7 +98,7 @@ class OneHotEncoderSuite
   }
 
   test("input column without ML attribute") {
-    val df = spark.createDataFrame(Seq(0.0, 1.0, 2.0, 1.0).map(Tuple1.apply)).toDF("index")
+    val df = Seq(0.0, 1.0, 2.0, 1.0).map(Tuple1.apply).toDF("index")
     val encoder = new OneHotEncoder()
       .setInputCol("index")
       .setOutputCol("encoded")
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/PCASuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/PCASuite.scala
index ddb51fb1706a773ef9d2bea4d4bdec89d540b980..a60e87590f06057e22613a2a9757c535d47d1c86 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/PCASuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/PCASuite.scala
@@ -29,6 +29,8 @@ import org.apache.spark.sql.Row
 
 class PCASuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   test("params") {
     ParamsSuite.checkParams(new PCA)
     val mat = Matrices.dense(2, 2, Array(0.0, 1.0, 2.0, 3.0)).asInstanceOf[DenseMatrix]
@@ -50,7 +52,7 @@ class PCASuite extends SparkFunSuite with MLlibTestSparkContext with DefaultRead
     val pc = mat.computePrincipalComponents(3)
     val expected = mat.multiply(pc).rows.map(_.asML)
 
-    val df = spark.createDataFrame(dataRDD.zip(expected)).toDF("features", "expected")
+    val df = dataRDD.zip(expected).toDF("features", "expected")
 
     val pca = new PCA()
       .setInputCol("features")
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/PolynomialExpansionSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/PolynomialExpansionSuite.scala
index 9ecd321b128f64498949897cdb85e7a7843119c6..e4b0ddf98bfadaccd000620ca6fc67d8335e7ca3 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/PolynomialExpansionSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/PolynomialExpansionSuite.scala
@@ -30,6 +30,8 @@ import org.apache.spark.sql.Row
 class PolynomialExpansionSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   test("params") {
     ParamsSuite.checkParams(new PolynomialExpansion)
   }
@@ -59,7 +61,7 @@ class PolynomialExpansionSuite
     Vectors.sparse(19, Array.empty, Array.empty))
 
   test("Polynomial expansion with default parameter") {
-    val df = spark.createDataFrame(data.zip(twoDegreeExpansion)).toDF("features", "expected")
+    val df = data.zip(twoDegreeExpansion).toSeq.toDF("features", "expected")
 
     val polynomialExpansion = new PolynomialExpansion()
       .setInputCol("features")
@@ -76,7 +78,7 @@ class PolynomialExpansionSuite
   }
 
   test("Polynomial expansion with setter") {
-    val df = spark.createDataFrame(data.zip(threeDegreeExpansion)).toDF("features", "expected")
+    val df = data.zip(threeDegreeExpansion).toSeq.toDF("features", "expected")
 
     val polynomialExpansion = new PolynomialExpansion()
       .setInputCol("features")
@@ -94,7 +96,7 @@ class PolynomialExpansionSuite
   }
 
   test("Polynomial expansion with degree 1 is identity on vectors") {
-    val df = spark.createDataFrame(data.zip(data)).toDF("features", "expected")
+    val df = data.zip(data).toSeq.toDF("features", "expected")
 
     val polynomialExpansion = new PolynomialExpansion()
       .setInputCol("features")
@@ -124,8 +126,7 @@ class PolynomialExpansionSuite
       (Vectors.dense(1.0, 2.0, 3.0, 4.0, 5.0, 6.0), 8007, 12375)
     )
 
-    val df = spark.createDataFrame(data)
-      .toDF("features", "expectedPoly10size", "expectedPoly11size")
+    val df = data.toSeq.toDF("features", "expectedPoly10size", "expectedPoly11size")
 
     val t = new PolynomialExpansion()
       .setInputCol("features")
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/RFormulaSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/RFormulaSuite.scala
index 0794a049d9cd868489f7fd5a0357944bd7c71dc5..97c268f3d5c970e9ce839e1be492138f9361a5a1 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/RFormulaSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/RFormulaSuite.scala
@@ -26,22 +26,23 @@ import org.apache.spark.mllib.util.MLlibTestSparkContext
 import org.apache.spark.sql.types.DoubleType
 
 class RFormulaSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
+
+  import testImplicits._
+
   test("params") {
     ParamsSuite.checkParams(new RFormula())
   }
 
   test("transform numeric data") {
     val formula = new RFormula().setFormula("id ~ v1 + v2")
-    val original = spark.createDataFrame(
-      Seq((0, 1.0, 3.0), (2, 2.0, 5.0))).toDF("id", "v1", "v2")
+    val original = Seq((0, 1.0, 3.0), (2, 2.0, 5.0)).toDF("id", "v1", "v2")
     val model = formula.fit(original)
     val result = model.transform(original)
     val resultSchema = model.transformSchema(original.schema)
-    val expected = spark.createDataFrame(
-      Seq(
-        (0, 1.0, 3.0, Vectors.dense(1.0, 3.0), 0.0),
-        (2, 2.0, 5.0, Vectors.dense(2.0, 5.0), 2.0))
-      ).toDF("id", "v1", "v2", "features", "label")
+    val expected = Seq(
+      (0, 1.0, 3.0, Vectors.dense(1.0, 3.0), 0.0),
+      (2, 2.0, 5.0, Vectors.dense(2.0, 5.0), 2.0)
+    ).toDF("id", "v1", "v2", "features", "label")
     // TODO(ekl) make schema comparisons ignore metadata, to avoid .toString
     assert(result.schema.toString == resultSchema.toString)
     assert(resultSchema == expected.schema)
@@ -50,7 +51,7 @@ class RFormulaSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
 
   test("features column already exists") {
     val formula = new RFormula().setFormula("y ~ x").setFeaturesCol("x")
-    val original = spark.createDataFrame(Seq((0, 1.0), (2, 2.0))).toDF("x", "y")
+    val original = Seq((0, 1.0), (2, 2.0)).toDF("x", "y")
     intercept[IllegalArgumentException] {
       formula.fit(original)
     }
@@ -58,7 +59,7 @@ class RFormulaSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
 
   test("label column already exists") {
     val formula = new RFormula().setFormula("y ~ x").setLabelCol("y")
-    val original = spark.createDataFrame(Seq((0, 1.0), (2, 2.0))).toDF("x", "y")
+    val original = Seq((0, 1.0), (2, 2.0)).toDF("x", "y")
     val model = formula.fit(original)
     val resultSchema = model.transformSchema(original.schema)
     assert(resultSchema.length == 3)
@@ -67,7 +68,7 @@ class RFormulaSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
 
   test("label column already exists but is not numeric type") {
     val formula = new RFormula().setFormula("y ~ x").setLabelCol("y")
-    val original = spark.createDataFrame(Seq((0, true), (2, false))).toDF("x", "y")
+    val original = Seq((0, true), (2, false)).toDF("x", "y")
     val model = formula.fit(original)
     intercept[IllegalArgumentException] {
       model.transformSchema(original.schema)
@@ -79,7 +80,7 @@ class RFormulaSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
 
   test("allow missing label column for test datasets") {
     val formula = new RFormula().setFormula("y ~ x").setLabelCol("label")
-    val original = spark.createDataFrame(Seq((0, 1.0), (2, 2.0))).toDF("x", "_not_y")
+    val original = Seq((0, 1.0), (2, 2.0)).toDF("x", "_not_y")
     val model = formula.fit(original)
     val resultSchema = model.transformSchema(original.schema)
     assert(resultSchema.length == 3)
@@ -88,37 +89,32 @@ class RFormulaSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
   }
 
   test("allow empty label") {
-    val original = spark.createDataFrame(
-      Seq((1, 2.0, 3.0), (4, 5.0, 6.0), (7, 8.0, 9.0))
-    ).toDF("id", "a", "b")
+    val original = Seq((1, 2.0, 3.0), (4, 5.0, 6.0), (7, 8.0, 9.0)).toDF("id", "a", "b")
     val formula = new RFormula().setFormula("~ a + b")
     val model = formula.fit(original)
     val result = model.transform(original)
     val resultSchema = model.transformSchema(original.schema)
-    val expected = spark.createDataFrame(
-      Seq(
-        (1, 2.0, 3.0, Vectors.dense(2.0, 3.0)),
-        (4, 5.0, 6.0, Vectors.dense(5.0, 6.0)),
-        (7, 8.0, 9.0, Vectors.dense(8.0, 9.0)))
-      ).toDF("id", "a", "b", "features")
+    val expected = Seq(
+      (1, 2.0, 3.0, Vectors.dense(2.0, 3.0)),
+      (4, 5.0, 6.0, Vectors.dense(5.0, 6.0)),
+      (7, 8.0, 9.0, Vectors.dense(8.0, 9.0))
+    ).toDF("id", "a", "b", "features")
     assert(result.schema.toString == resultSchema.toString)
     assert(result.collect() === expected.collect())
   }
 
   test("encodes string terms") {
     val formula = new RFormula().setFormula("id ~ a + b")
-    val original = spark.createDataFrame(
-      Seq((1, "foo", 4), (2, "bar", 4), (3, "bar", 5), (4, "baz", 5))
-    ).toDF("id", "a", "b")
+    val original = Seq((1, "foo", 4), (2, "bar", 4), (3, "bar", 5), (4, "baz", 5))
+      .toDF("id", "a", "b")
     val model = formula.fit(original)
     val result = model.transform(original)
     val resultSchema = model.transformSchema(original.schema)
-    val expected = spark.createDataFrame(
-      Seq(
+    val expected = Seq(
         (1, "foo", 4, Vectors.dense(0.0, 1.0, 4.0), 1.0),
         (2, "bar", 4, Vectors.dense(1.0, 0.0, 4.0), 2.0),
         (3, "bar", 5, Vectors.dense(1.0, 0.0, 5.0), 3.0),
-        (4, "baz", 5, Vectors.dense(0.0, 0.0, 5.0), 4.0))
+        (4, "baz", 5, Vectors.dense(0.0, 0.0, 5.0), 4.0)
       ).toDF("id", "a", "b", "features", "label")
     assert(result.schema.toString == resultSchema.toString)
     assert(result.collect() === expected.collect())
@@ -126,17 +122,16 @@ class RFormulaSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
 
   test("index string label") {
     val formula = new RFormula().setFormula("id ~ a + b")
-    val original = spark.createDataFrame(
+    val original =
       Seq(("male", "foo", 4), ("female", "bar", 4), ("female", "bar", 5), ("male", "baz", 5))
-    ).toDF("id", "a", "b")
+        .toDF("id", "a", "b")
     val model = formula.fit(original)
     val result = model.transform(original)
-    val expected = spark.createDataFrame(
-      Seq(
+    val expected = Seq(
         ("male", "foo", 4, Vectors.dense(0.0, 1.0, 4.0), 1.0),
         ("female", "bar", 4, Vectors.dense(1.0, 0.0, 4.0), 0.0),
         ("female", "bar", 5, Vectors.dense(1.0, 0.0, 5.0), 0.0),
-        ("male", "baz", 5, Vectors.dense(0.0, 0.0, 5.0), 1.0))
+        ("male", "baz", 5, Vectors.dense(0.0, 0.0, 5.0), 1.0)
     ).toDF("id", "a", "b", "features", "label")
     // assert(result.schema.toString == resultSchema.toString)
     assert(result.collect() === expected.collect())
@@ -144,9 +139,8 @@ class RFormulaSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
 
   test("attribute generation") {
     val formula = new RFormula().setFormula("id ~ a + b")
-    val original = spark.createDataFrame(
-      Seq((1, "foo", 4), (2, "bar", 4), (3, "bar", 5), (4, "baz", 5))
-    ).toDF("id", "a", "b")
+    val original = Seq((1, "foo", 4), (2, "bar", 4), (3, "bar", 5), (4, "baz", 5))
+      .toDF("id", "a", "b")
     val model = formula.fit(original)
     val result = model.transform(original)
     val attrs = AttributeGroup.fromStructField(result.schema("features"))
@@ -161,9 +155,8 @@ class RFormulaSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
 
   test("vector attribute generation") {
     val formula = new RFormula().setFormula("id ~ vec")
-    val original = spark.createDataFrame(
-      Seq((1, Vectors.dense(0.0, 1.0)), (2, Vectors.dense(1.0, 2.0)))
-    ).toDF("id", "vec")
+    val original = Seq((1, Vectors.dense(0.0, 1.0)), (2, Vectors.dense(1.0, 2.0)))
+      .toDF("id", "vec")
     val model = formula.fit(original)
     val result = model.transform(original)
     val attrs = AttributeGroup.fromStructField(result.schema("features"))
@@ -177,9 +170,8 @@ class RFormulaSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
 
   test("vector attribute generation with unnamed input attrs") {
     val formula = new RFormula().setFormula("id ~ vec2")
-    val base = spark.createDataFrame(
-      Seq((1, Vectors.dense(0.0, 1.0)), (2, Vectors.dense(1.0, 2.0)))
-    ).toDF("id", "vec")
+    val base = Seq((1, Vectors.dense(0.0, 1.0)), (2, Vectors.dense(1.0, 2.0)))
+      .toDF("id", "vec")
     val metadata = new AttributeGroup(
       "vec2",
       Array[Attribute](
@@ -199,16 +191,13 @@ class RFormulaSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
 
   test("numeric interaction") {
     val formula = new RFormula().setFormula("a ~ b:c:d")
-    val original = spark.createDataFrame(
-      Seq((1, 2, 4, 2), (2, 3, 4, 1))
-    ).toDF("a", "b", "c", "d")
+    val original = Seq((1, 2, 4, 2), (2, 3, 4, 1)).toDF("a", "b", "c", "d")
     val model = formula.fit(original)
     val result = model.transform(original)
-    val expected = spark.createDataFrame(
-      Seq(
-        (1, 2, 4, 2, Vectors.dense(16.0), 1.0),
-        (2, 3, 4, 1, Vectors.dense(12.0), 2.0))
-      ).toDF("a", "b", "c", "d", "features", "label")
+    val expected = Seq(
+      (1, 2, 4, 2, Vectors.dense(16.0), 1.0),
+      (2, 3, 4, 1, Vectors.dense(12.0), 2.0)
+    ).toDF("a", "b", "c", "d", "features", "label")
     assert(result.collect() === expected.collect())
     val attrs = AttributeGroup.fromStructField(result.schema("features"))
     val expectedAttrs = new AttributeGroup(
@@ -219,20 +208,19 @@ class RFormulaSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
 
   test("factor numeric interaction") {
     val formula = new RFormula().setFormula("id ~ a:b")
-    val original = spark.createDataFrame(
+    val original =
       Seq((1, "foo", 4), (2, "bar", 4), (3, "bar", 5), (4, "baz", 5), (4, "baz", 5), (4, "baz", 5))
-    ).toDF("id", "a", "b")
+        .toDF("id", "a", "b")
     val model = formula.fit(original)
     val result = model.transform(original)
-    val expected = spark.createDataFrame(
-      Seq(
-        (1, "foo", 4, Vectors.dense(0.0, 0.0, 4.0), 1.0),
-        (2, "bar", 4, Vectors.dense(0.0, 4.0, 0.0), 2.0),
-        (3, "bar", 5, Vectors.dense(0.0, 5.0, 0.0), 3.0),
-        (4, "baz", 5, Vectors.dense(5.0, 0.0, 0.0), 4.0),
-        (4, "baz", 5, Vectors.dense(5.0, 0.0, 0.0), 4.0),
-        (4, "baz", 5, Vectors.dense(5.0, 0.0, 0.0), 4.0))
-      ).toDF("id", "a", "b", "features", "label")
+    val expected = Seq(
+      (1, "foo", 4, Vectors.dense(0.0, 0.0, 4.0), 1.0),
+      (2, "bar", 4, Vectors.dense(0.0, 4.0, 0.0), 2.0),
+      (3, "bar", 5, Vectors.dense(0.0, 5.0, 0.0), 3.0),
+      (4, "baz", 5, Vectors.dense(5.0, 0.0, 0.0), 4.0),
+      (4, "baz", 5, Vectors.dense(5.0, 0.0, 0.0), 4.0),
+      (4, "baz", 5, Vectors.dense(5.0, 0.0, 0.0), 4.0)
+    ).toDF("id", "a", "b", "features", "label")
     assert(result.collect() === expected.collect())
     val attrs = AttributeGroup.fromStructField(result.schema("features"))
     val expectedAttrs = new AttributeGroup(
@@ -246,17 +234,15 @@ class RFormulaSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
 
   test("factor factor interaction") {
     val formula = new RFormula().setFormula("id ~ a:b")
-    val original = spark.createDataFrame(
-      Seq((1, "foo", "zq"), (2, "bar", "zq"), (3, "bar", "zz"))
-    ).toDF("id", "a", "b")
+    val original =
+      Seq((1, "foo", "zq"), (2, "bar", "zq"), (3, "bar", "zz")).toDF("id", "a", "b")
     val model = formula.fit(original)
     val result = model.transform(original)
-    val expected = spark.createDataFrame(
-      Seq(
-        (1, "foo", "zq", Vectors.dense(0.0, 0.0, 1.0, 0.0), 1.0),
-        (2, "bar", "zq", Vectors.dense(1.0, 0.0, 0.0, 0.0), 2.0),
-        (3, "bar", "zz", Vectors.dense(0.0, 1.0, 0.0, 0.0), 3.0))
-      ).toDF("id", "a", "b", "features", "label")
+    val expected = Seq(
+      (1, "foo", "zq", Vectors.dense(0.0, 0.0, 1.0, 0.0), 1.0),
+      (2, "bar", "zq", Vectors.dense(1.0, 0.0, 0.0, 0.0), 2.0),
+      (3, "bar", "zz", Vectors.dense(0.0, 1.0, 0.0, 0.0), 3.0)
+    ).toDF("id", "a", "b", "features", "label")
     assert(result.collect() === expected.collect())
     val attrs = AttributeGroup.fromStructField(result.schema("features"))
     val expectedAttrs = new AttributeGroup(
@@ -295,9 +281,7 @@ class RFormulaSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
       }
     }
 
-    val dataset = spark.createDataFrame(
-      Seq((1, "foo", "zq"), (2, "bar", "zq"), (3, "bar", "zz"))
-    ).toDF("id", "a", "b")
+    val dataset = Seq((1, "foo", "zq"), (2, "bar", "zq"), (3, "bar", "zz")).toDF("id", "a", "b")
 
     val rFormula = new RFormula().setFormula("id ~ a:b")
 
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/SQLTransformerSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/SQLTransformerSuite.scala
index 1401ea9c4b431ce2b436269880dcf227733e8d84..23464073e6edb526e7f98f0200f93188f2924fd3 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/SQLTransformerSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/SQLTransformerSuite.scala
@@ -26,19 +26,19 @@ import org.apache.spark.sql.types.{LongType, StructField, StructType}
 class SQLTransformerSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   test("params") {
     ParamsSuite.checkParams(new SQLTransformer())
   }
 
   test("transform numeric data") {
-    val original = spark.createDataFrame(
-      Seq((0, 1.0, 3.0), (2, 2.0, 5.0))).toDF("id", "v1", "v2")
+    val original = Seq((0, 1.0, 3.0), (2, 2.0, 5.0)).toDF("id", "v1", "v2")
     val sqlTrans = new SQLTransformer().setStatement(
       "SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__")
     val result = sqlTrans.transform(original)
     val resultSchema = sqlTrans.transformSchema(original.schema)
-    val expected = spark.createDataFrame(
-      Seq((0, 1.0, 3.0, 4.0, 3.0), (2, 2.0, 5.0, 7.0, 10.0)))
+    val expected = Seq((0, 1.0, 3.0, 4.0, 3.0), (2, 2.0, 5.0, 7.0, 10.0))
       .toDF("id", "v1", "v2", "v3", "v4")
     assert(result.schema.toString == resultSchema.toString)
     assert(resultSchema == expected.schema)
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/StandardScalerSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/StandardScalerSuite.scala
index 827ecb0fadbeef5b97bafd5f2b7d547e4d64fa6f..a928f93633011b47c19de2c394822a652aff1237 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/StandardScalerSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/StandardScalerSuite.scala
@@ -28,6 +28,8 @@ import org.apache.spark.sql.{DataFrame, Row}
 class StandardScalerSuite extends SparkFunSuite with MLlibTestSparkContext
   with DefaultReadWriteTest {
 
+  import testImplicits._
+
   @transient var data: Array[Vector] = _
   @transient var resWithStd: Array[Vector] = _
   @transient var resWithMean: Array[Vector] = _
@@ -73,7 +75,7 @@ class StandardScalerSuite extends SparkFunSuite with MLlibTestSparkContext
   }
 
   test("Standardization with default parameter") {
-    val df0 = spark.createDataFrame(data.zip(resWithStd)).toDF("features", "expected")
+    val df0 = data.zip(resWithStd).toSeq.toDF("features", "expected")
 
     val standardScaler0 = new StandardScaler()
       .setInputCol("features")
@@ -84,9 +86,9 @@ class StandardScalerSuite extends SparkFunSuite with MLlibTestSparkContext
   }
 
   test("Standardization with setter") {
-    val df1 = spark.createDataFrame(data.zip(resWithBoth)).toDF("features", "expected")
-    val df2 = spark.createDataFrame(data.zip(resWithMean)).toDF("features", "expected")
-    val df3 = spark.createDataFrame(data.zip(data)).toDF("features", "expected")
+    val df1 = data.zip(resWithBoth).toSeq.toDF("features", "expected")
+    val df2 = data.zip(resWithMean).toSeq.toDF("features", "expected")
+    val df3 = data.zip(data).toSeq.toDF("features", "expected")
 
     val standardScaler1 = new StandardScaler()
       .setInputCol("features")
@@ -120,7 +122,7 @@ class StandardScalerSuite extends SparkFunSuite with MLlibTestSparkContext
       Vectors.sparse(3, Array(1, 2), Array(-5.1, 1.0)),
       Vectors.dense(1.7, -0.6, 3.3)
     )
-    val df = spark.createDataFrame(someSparseData.zip(resWithMean)).toDF("features", "expected")
+    val df = someSparseData.zip(resWithMean).toSeq.toDF("features", "expected")
     val standardScaler = new StandardScaler()
       .setInputCol("features")
       .setOutputCol("standardized_features")
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/StopWordsRemoverSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/StopWordsRemoverSuite.scala
index 125ad02ebcc0222228eebdb71e2627402408b96d..957cf58a68f853b07cac219ca9c59c7a9ff68225 100755
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/StopWordsRemoverSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/StopWordsRemoverSuite.scala
@@ -37,19 +37,20 @@ class StopWordsRemoverSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
   import StopWordsRemoverSuite._
+  import testImplicits._
 
   test("StopWordsRemover default") {
     val remover = new StopWordsRemover()
       .setInputCol("raw")
       .setOutputCol("filtered")
-    val dataSet = spark.createDataFrame(Seq(
+    val dataSet = Seq(
       (Seq("test", "test"), Seq("test", "test")),
       (Seq("a", "b", "c", "d"), Seq("b", "c")),
       (Seq("a", "the", "an"), Seq()),
       (Seq("A", "The", "AN"), Seq()),
       (Seq(null), Seq(null)),
       (Seq(), Seq())
-    )).toDF("raw", "expected")
+    ).toDF("raw", "expected")
 
     testStopWordsRemover(remover, dataSet)
   }
@@ -60,14 +61,14 @@ class StopWordsRemoverSuite
       .setInputCol("raw")
       .setOutputCol("filtered")
       .setStopWords(stopWords)
-    val dataSet = spark.createDataFrame(Seq(
+    val dataSet = Seq(
       (Seq("test", "test"), Seq()),
       (Seq("a", "b", "c", "d"), Seq("b", "c", "d")),
       (Seq("a", "the", "an"), Seq()),
       (Seq("A", "The", "AN"), Seq()),
       (Seq(null), Seq(null)),
       (Seq(), Seq())
-    )).toDF("raw", "expected")
+    ).toDF("raw", "expected")
 
     testStopWordsRemover(remover, dataSet)
   }
@@ -77,10 +78,10 @@ class StopWordsRemoverSuite
       .setInputCol("raw")
       .setOutputCol("filtered")
       .setCaseSensitive(true)
-    val dataSet = spark.createDataFrame(Seq(
+    val dataSet = Seq(
       (Seq("A"), Seq("A")),
       (Seq("The", "the"), Seq("The"))
-    )).toDF("raw", "expected")
+    ).toDF("raw", "expected")
 
     testStopWordsRemover(remover, dataSet)
   }
@@ -98,10 +99,10 @@ class StopWordsRemoverSuite
       .setInputCol("raw")
       .setOutputCol("filtered")
       .setStopWords(stopWords)
-    val dataSet = spark.createDataFrame(Seq(
+    val dataSet = Seq(
       (Seq("acaba", "ama", "biri"), Seq()),
       (Seq("hep", "her", "scala"), Seq("scala"))
-    )).toDF("raw", "expected")
+    ).toDF("raw", "expected")
 
     testStopWordsRemover(remover, dataSet)
   }
@@ -112,10 +113,10 @@ class StopWordsRemoverSuite
       .setInputCol("raw")
       .setOutputCol("filtered")
       .setStopWords(stopWords.toArray)
-    val dataSet = spark.createDataFrame(Seq(
+    val dataSet = Seq(
       (Seq("python", "scala", "a"), Seq("python", "scala", "a")),
       (Seq("Python", "Scala", "swift"), Seq("Python", "Scala", "swift"))
-    )).toDF("raw", "expected")
+    ).toDF("raw", "expected")
 
     testStopWordsRemover(remover, dataSet)
   }
@@ -126,10 +127,10 @@ class StopWordsRemoverSuite
       .setInputCol("raw")
       .setOutputCol("filtered")
       .setStopWords(stopWords.toArray)
-    val dataSet = spark.createDataFrame(Seq(
+    val dataSet = Seq(
       (Seq("python", "scala", "a"), Seq()),
       (Seq("Python", "Scala", "swift"), Seq("swift"))
-    )).toDF("raw", "expected")
+    ).toDF("raw", "expected")
 
     testStopWordsRemover(remover, dataSet)
   }
@@ -148,9 +149,7 @@ class StopWordsRemoverSuite
     val remover = new StopWordsRemover()
       .setInputCol("raw")
       .setOutputCol(outputCol)
-    val dataSet = spark.createDataFrame(Seq(
-      (Seq("The", "the", "swift"), Seq("swift"))
-    )).toDF("raw", outputCol)
+    val dataSet = Seq((Seq("The", "the", "swift"), Seq("swift"))).toDF("raw", outputCol)
 
     val thrown = intercept[IllegalArgumentException] {
       testStopWordsRemover(remover, dataSet)
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/StringIndexerSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/StringIndexerSuite.scala
index b478fea5e74ecb99482a54595452505dce8d4bae..a6bbb944a1bd7fd6fbe0dd1ab7d4c32420b2bb61 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/StringIndexerSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/StringIndexerSuite.scala
@@ -29,6 +29,8 @@ import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructTy
 class StringIndexerSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   test("params") {
     ParamsSuite.checkParams(new StringIndexer)
     val model = new StringIndexerModel("indexer", Array("a", "b"))
@@ -38,8 +40,8 @@ class StringIndexerSuite
   }
 
   test("StringIndexer") {
-    val data = sc.parallelize(Seq((0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c")), 2)
-    val df = spark.createDataFrame(data).toDF("id", "label")
+    val data = Seq((0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c"))
+    val df = data.toDF("id", "label")
     val indexer = new StringIndexer()
       .setInputCol("label")
       .setOutputCol("labelIndex")
@@ -61,10 +63,10 @@ class StringIndexerSuite
   }
 
   test("StringIndexerUnseen") {
-    val data = sc.parallelize(Seq((0, "a"), (1, "b"), (4, "b")), 2)
-    val data2 = sc.parallelize(Seq((0, "a"), (1, "b"), (2, "c")), 2)
-    val df = spark.createDataFrame(data).toDF("id", "label")
-    val df2 = spark.createDataFrame(data2).toDF("id", "label")
+    val data = Seq((0, "a"), (1, "b"), (4, "b"))
+    val data2 = Seq((0, "a"), (1, "b"), (2, "c"))
+    val df = data.toDF("id", "label")
+    val df2 = data2.toDF("id", "label")
     val indexer = new StringIndexer()
       .setInputCol("label")
       .setOutputCol("labelIndex")
@@ -92,8 +94,8 @@ class StringIndexerSuite
   }
 
   test("StringIndexer with a numeric input column") {
-    val data = sc.parallelize(Seq((0, 100), (1, 200), (2, 300), (3, 100), (4, 100), (5, 300)), 2)
-    val df = spark.createDataFrame(data).toDF("id", "label")
+    val data = Seq((0, 100), (1, 200), (2, 300), (3, 100), (4, 100), (5, 300))
+    val df = data.toDF("id", "label")
     val indexer = new StringIndexer()
       .setInputCol("label")
       .setOutputCol("labelIndex")
@@ -119,7 +121,7 @@ class StringIndexerSuite
   }
 
   test("StringIndexerModel can't overwrite output column") {
-    val df = spark.createDataFrame(Seq((1, 2), (3, 4))).toDF("input", "output")
+    val df = Seq((1, 2), (3, 4)).toDF("input", "output")
     intercept[IllegalArgumentException] {
       new StringIndexer()
         .setInputCol("input")
@@ -161,9 +163,7 @@ class StringIndexerSuite
 
   test("IndexToString.transform") {
     val labels = Array("a", "b", "c")
-    val df0 = spark.createDataFrame(Seq(
-      (0, "a"), (1, "b"), (2, "c"), (0, "a")
-    )).toDF("index", "expected")
+    val df0 = Seq((0, "a"), (1, "b"), (2, "c"), (0, "a")).toDF("index", "expected")
 
     val idxToStr0 = new IndexToString()
       .setInputCol("index")
@@ -187,8 +187,8 @@ class StringIndexerSuite
   }
 
   test("StringIndexer, IndexToString are inverses") {
-    val data = sc.parallelize(Seq((0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c")), 2)
-    val df = spark.createDataFrame(data).toDF("id", "label")
+    val data = Seq((0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c"))
+    val df = data.toDF("id", "label")
     val indexer = new StringIndexer()
       .setInputCol("label")
       .setOutputCol("labelIndex")
@@ -220,8 +220,8 @@ class StringIndexerSuite
   }
 
   test("StringIndexer metadata") {
-    val data = sc.parallelize(Seq((0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c")), 2)
-    val df = spark.createDataFrame(data).toDF("id", "label")
+    val data = Seq((0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c"))
+    val df = data.toDF("id", "label")
     val indexer = new StringIndexer()
       .setInputCol("label")
       .setOutputCol("labelIndex")
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/TokenizerSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/TokenizerSuite.scala
index f30bdc3ddc0d707129956bd46d9b3b2f69c02c9a..c895659a2d8bef257bb111b331f177fcbc1548a0 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/TokenizerSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/TokenizerSuite.scala
@@ -46,6 +46,7 @@ class RegexTokenizerSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
   import org.apache.spark.ml.feature.RegexTokenizerSuite._
+  import testImplicits._
 
   test("params") {
     ParamsSuite.checkParams(new RegexTokenizer)
@@ -57,26 +58,26 @@ class RegexTokenizerSuite
       .setPattern("\\w+|\\p{Punct}")
       .setInputCol("rawText")
       .setOutputCol("tokens")
-    val dataset0 = spark.createDataFrame(Seq(
+    val dataset0 = Seq(
       TokenizerTestData("Test for tokenization.", Array("test", "for", "tokenization", ".")),
       TokenizerTestData("Te,st. punct", Array("te", ",", "st", ".", "punct"))
-    ))
+    ).toDF()
     testRegexTokenizer(tokenizer0, dataset0)
 
-    val dataset1 = spark.createDataFrame(Seq(
+    val dataset1 = Seq(
       TokenizerTestData("Test for tokenization.", Array("test", "for", "tokenization")),
       TokenizerTestData("Te,st. punct", Array("punct"))
-    ))
+    ).toDF()
     tokenizer0.setMinTokenLength(3)
     testRegexTokenizer(tokenizer0, dataset1)
 
     val tokenizer2 = new RegexTokenizer()
       .setInputCol("rawText")
       .setOutputCol("tokens")
-    val dataset2 = spark.createDataFrame(Seq(
+    val dataset2 = Seq(
       TokenizerTestData("Test for tokenization.", Array("test", "for", "tokenization.")),
       TokenizerTestData("Te,st.  punct", Array("te,st.", "punct"))
-    ))
+    ).toDF()
     testRegexTokenizer(tokenizer2, dataset2)
   }
 
@@ -85,10 +86,10 @@ class RegexTokenizerSuite
       .setInputCol("rawText")
       .setOutputCol("tokens")
       .setToLowercase(false)
-    val dataset = spark.createDataFrame(Seq(
+    val dataset = Seq(
       TokenizerTestData("JAVA SCALA", Array("JAVA", "SCALA")),
       TokenizerTestData("java scala", Array("java", "scala"))
-    ))
+    ).toDF()
     testRegexTokenizer(tokenizer, dataset)
   }
 
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/VectorAssemblerSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/VectorAssemblerSuite.scala
index 561493fbafd6c0fb9a563d897fe2e8e901e20a3e..46cced3a9a6e5d501a1f1d10d59ce8fd119092d6 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/VectorAssemblerSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/VectorAssemblerSuite.scala
@@ -29,6 +29,8 @@ import org.apache.spark.sql.functions.col
 class VectorAssemblerSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   test("params") {
     ParamsSuite.checkParams(new VectorAssembler)
   }
@@ -57,9 +59,9 @@ class VectorAssemblerSuite
   }
 
   test("VectorAssembler") {
-    val df = spark.createDataFrame(Seq(
+    val df = Seq(
       (0, 0.0, Vectors.dense(1.0, 2.0), "a", Vectors.sparse(2, Array(1), Array(3.0)), 10L)
-    )).toDF("id", "x", "y", "name", "z", "n")
+    ).toDF("id", "x", "y", "name", "z", "n")
     val assembler = new VectorAssembler()
       .setInputCols(Array("x", "y", "z", "n"))
       .setOutputCol("features")
@@ -70,7 +72,7 @@ class VectorAssemblerSuite
   }
 
   test("transform should throw an exception in case of unsupported type") {
-    val df = spark.createDataFrame(Seq(("a", "b", "c"))).toDF("a", "b", "c")
+    val df = Seq(("a", "b", "c")).toDF("a", "b", "c")
     val assembler = new VectorAssembler()
       .setInputCols(Array("a", "b", "c"))
       .setOutputCol("features")
@@ -87,7 +89,7 @@ class VectorAssemblerSuite
       NominalAttribute.defaultAttr.withName("gender").withValues("male", "female"),
       NumericAttribute.defaultAttr.withName("salary")))
     val row = (1.0, 0.5, 1, Vectors.dense(1.0, 1000.0), Vectors.sparse(2, Array(1), Array(2.0)))
-    val df = spark.createDataFrame(Seq(row)).toDF("browser", "hour", "count", "user", "ad")
+    val df = Seq(row).toDF("browser", "hour", "count", "user", "ad")
       .select(
         col("browser").as("browser", browser.toMetadata()),
         col("hour").as("hour", hour.toMetadata()),
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/VectorIndexerSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/VectorIndexerSuite.scala
index 707142332349c3f7bbd4bad9ae6d56b4cc5cfd51..4da1b133e8cd55a85fe855f394113a970bb2b005 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/VectorIndexerSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/VectorIndexerSuite.scala
@@ -32,6 +32,7 @@ import org.apache.spark.sql.DataFrame
 class VectorIndexerSuite extends SparkFunSuite with MLlibTestSparkContext
   with DefaultReadWriteTest with Logging {
 
+  import testImplicits._
   import VectorIndexerSuite.FeatureData
 
   // identical, of length 3
@@ -85,11 +86,13 @@ class VectorIndexerSuite extends SparkFunSuite with MLlibTestSparkContext
     checkPair(densePoints1Seq, sparsePoints1Seq)
     checkPair(densePoints2Seq, sparsePoints2Seq)
 
-    densePoints1 = spark.createDataFrame(sc.parallelize(densePoints1Seq, 2).map(FeatureData))
-    sparsePoints1 = spark.createDataFrame(sc.parallelize(sparsePoints1Seq, 2).map(FeatureData))
-    densePoints2 = spark.createDataFrame(sc.parallelize(densePoints2Seq, 2).map(FeatureData))
-    sparsePoints2 = spark.createDataFrame(sc.parallelize(sparsePoints2Seq, 2).map(FeatureData))
-    badPoints = spark.createDataFrame(sc.parallelize(badPointsSeq, 2).map(FeatureData))
+    densePoints1 = densePoints1Seq.map(FeatureData).toDF()
+    sparsePoints1 = sparsePoints1Seq.map(FeatureData).toDF()
+    // TODO: If we directly use `toDF` without parallelize, the test in
+    // "Throws error when given RDDs with different size vectors" is failed for an unknown reason.
+    densePoints2 = sc.parallelize(densePoints2Seq, 2).map(FeatureData).toDF()
+    sparsePoints2 = sparsePoints2Seq.map(FeatureData).toDF()
+    badPoints = badPointsSeq.map(FeatureData).toDF()
   }
 
   private def getIndexer: VectorIndexer =
@@ -102,7 +105,7 @@ class VectorIndexerSuite extends SparkFunSuite with MLlibTestSparkContext
   }
 
   test("Cannot fit an empty DataFrame") {
-    val rdd = spark.createDataFrame(sc.parallelize(Array.empty[Vector], 2).map(FeatureData))
+    val rdd = Array.empty[Vector].map(FeatureData).toSeq.toDF()
     val vectorIndexer = getIndexer
     intercept[IllegalArgumentException] {
       vectorIndexer.fit(rdd)
diff --git a/mllib/src/test/scala/org/apache/spark/ml/regression/AFTSurvivalRegressionSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/regression/AFTSurvivalRegressionSuite.scala
index 1c70b702de063695829d6dc63efb97c5395d23b9..0fdfdf37cf38d90b70abe55d9c490cd555fedef6 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/regression/AFTSurvivalRegressionSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/regression/AFTSurvivalRegressionSuite.scala
@@ -31,23 +31,22 @@ import org.apache.spark.sql.{DataFrame, Row}
 class AFTSurvivalRegressionSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   @transient var datasetUnivariate: DataFrame = _
   @transient var datasetMultivariate: DataFrame = _
   @transient var datasetUnivariateScaled: DataFrame = _
 
   override def beforeAll(): Unit = {
     super.beforeAll()
-    datasetUnivariate = spark.createDataFrame(
-      sc.parallelize(generateAFTInput(
-        1, Array(5.5), Array(0.8), 1000, 42, 1.0, 2.0, 2.0)))
-    datasetMultivariate = spark.createDataFrame(
-      sc.parallelize(generateAFTInput(
-        2, Array(0.9, -1.3), Array(0.7, 1.2), 1000, 42, 1.5, 2.5, 2.0)))
-    datasetUnivariateScaled = spark.createDataFrame(
-      sc.parallelize(generateAFTInput(
-        1, Array(5.5), Array(0.8), 1000, 42, 1.0, 2.0, 2.0)).map { x =>
-          AFTPoint(Vectors.dense(x.features(0) * 1.0E3), x.label, x.censor)
-      })
+    datasetUnivariate = generateAFTInput(
+      1, Array(5.5), Array(0.8), 1000, 42, 1.0, 2.0, 2.0).toDF()
+    datasetMultivariate = generateAFTInput(
+      2, Array(0.9, -1.3), Array(0.7, 1.2), 1000, 42, 1.5, 2.5, 2.0).toDF()
+    datasetUnivariateScaled = sc.parallelize(
+      generateAFTInput(1, Array(5.5), Array(0.8), 1000, 42, 1.0, 2.0, 2.0)).map { x =>
+        AFTPoint(Vectors.dense(x.features(0) * 1.0E3), x.label, x.censor)
+      }.toDF()
   }
 
   /**
@@ -396,9 +395,8 @@ class AFTSurvivalRegressionSuite
     // the parallelism is bigger than that. Because the issue was about `AFTAggregator`s
     // being merged incorrectly when it has an empty partition, running the codes below
     // should not throw an exception.
-    val dataset = spark.createDataFrame(
-      sc.parallelize(generateAFTInput(
-        1, Array(5.5), Array(0.8), 2, 42, 1.0, 2.0, 2.0), numSlices = 3))
+    val dataset = sc.parallelize(generateAFTInput(
+      1, Array(5.5), Array(0.8), 2, 42, 1.0, 2.0, 2.0), numSlices = 3).toDF()
     val trainer = new AFTSurvivalRegression()
     trainer.fit(dataset)
   }
diff --git a/mllib/src/test/scala/org/apache/spark/ml/regression/GBTRegressorSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/regression/GBTRegressorSuite.scala
index 7b5df8f31bb38cb3c5681e058acadb5ba8e2e0f2..dcf3f9a1ea9b263ab24d3f8c918d0a12260c49e7 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/regression/GBTRegressorSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/regression/GBTRegressorSuite.scala
@@ -37,6 +37,7 @@ class GBTRegressorSuite extends SparkFunSuite with MLlibTestSparkContext
   with DefaultReadWriteTest {
 
   import GBTRegressorSuite.compareAPIs
+  import testImplicits._
 
   // Combinations for estimators, learning rates and subsamplingRate
   private val testCombinations =
@@ -76,14 +77,14 @@ class GBTRegressorSuite extends SparkFunSuite with MLlibTestSparkContext
   }
 
   test("GBTRegressor behaves reasonably on toy data") {
-    val df = spark.createDataFrame(Seq(
+    val df = Seq(
       LabeledPoint(10, Vectors.dense(1, 2, 3, 4)),
       LabeledPoint(-5, Vectors.dense(6, 3, 2, 1)),
       LabeledPoint(11, Vectors.dense(2, 2, 3, 4)),
       LabeledPoint(-6, Vectors.dense(6, 4, 2, 1)),
       LabeledPoint(9, Vectors.dense(1, 2, 6, 4)),
       LabeledPoint(-4, Vectors.dense(6, 3, 2, 2))
-    ))
+    ).toDF()
     val gbt = new GBTRegressor()
       .setMaxDepth(2)
       .setMaxIter(2)
@@ -103,7 +104,7 @@ class GBTRegressorSuite extends SparkFunSuite with MLlibTestSparkContext
     val path = tempDir.toURI.toString
     sc.setCheckpointDir(path)
 
-    val df = spark.createDataFrame(data)
+    val df = data.toDF()
     val gbt = new GBTRegressor()
       .setMaxDepth(2)
       .setMaxIter(5)
diff --git a/mllib/src/test/scala/org/apache/spark/ml/regression/GeneralizedLinearRegressionSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/regression/GeneralizedLinearRegressionSuite.scala
index d8032c4e1705b52c1a2ca025f60f7e46ef48f64d..937aa7d3c2045a003d788391ae9f61d8ebb77d9c 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/regression/GeneralizedLinearRegressionSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/regression/GeneralizedLinearRegressionSuite.scala
@@ -35,6 +35,8 @@ import org.apache.spark.sql.functions._
 class GeneralizedLinearRegressionSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   private val seed: Int = 42
   @transient var datasetGaussianIdentity: DataFrame = _
   @transient var datasetGaussianLog: DataFrame = _
@@ -52,23 +54,20 @@ class GeneralizedLinearRegressionSuite
 
     import GeneralizedLinearRegressionSuite._
 
-    datasetGaussianIdentity = spark.createDataFrame(
-      sc.parallelize(generateGeneralizedLinearRegressionInput(
-        intercept = 2.5, coefficients = Array(2.2, 0.6), xMean = Array(2.9, 10.5),
-        xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
-        family = "gaussian", link = "identity"), 2))
+    datasetGaussianIdentity = generateGeneralizedLinearRegressionInput(
+      intercept = 2.5, coefficients = Array(2.2, 0.6), xMean = Array(2.9, 10.5),
+      xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
+      family = "gaussian", link = "identity").toDF()
 
-    datasetGaussianLog = spark.createDataFrame(
-      sc.parallelize(generateGeneralizedLinearRegressionInput(
-        intercept = 0.25, coefficients = Array(0.22, 0.06), xMean = Array(2.9, 10.5),
-        xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
-        family = "gaussian", link = "log"), 2))
+    datasetGaussianLog = generateGeneralizedLinearRegressionInput(
+      intercept = 0.25, coefficients = Array(0.22, 0.06), xMean = Array(2.9, 10.5),
+      xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
+      family = "gaussian", link = "log").toDF()
 
-    datasetGaussianInverse = spark.createDataFrame(
-      sc.parallelize(generateGeneralizedLinearRegressionInput(
-        intercept = 2.5, coefficients = Array(2.2, 0.6), xMean = Array(2.9, 10.5),
-        xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
-        family = "gaussian", link = "inverse"), 2))
+    datasetGaussianInverse = generateGeneralizedLinearRegressionInput(
+      intercept = 2.5, coefficients = Array(2.2, 0.6), xMean = Array(2.9, 10.5),
+      xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
+      family = "gaussian", link = "inverse").toDF()
 
     datasetBinomial = {
       val nPoints = 10000
@@ -80,44 +79,38 @@ class GeneralizedLinearRegressionSuite
         generateMultinomialLogisticInput(coefficients, xMean, xVariance,
           addIntercept = true, nPoints, seed)
 
-      spark.createDataFrame(sc.parallelize(testData, 2))
+      testData.toDF()
     }
 
-    datasetPoissonLog = spark.createDataFrame(
-      sc.parallelize(generateGeneralizedLinearRegressionInput(
-        intercept = 0.25, coefficients = Array(0.22, 0.06), xMean = Array(2.9, 10.5),
-        xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
-        family = "poisson", link = "log"), 2))
-
-    datasetPoissonIdentity = spark.createDataFrame(
-      sc.parallelize(generateGeneralizedLinearRegressionInput(
-        intercept = 2.5, coefficients = Array(2.2, 0.6), xMean = Array(2.9, 10.5),
-        xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
-        family = "poisson", link = "identity"), 2))
-
-    datasetPoissonSqrt = spark.createDataFrame(
-      sc.parallelize(generateGeneralizedLinearRegressionInput(
-        intercept = 2.5, coefficients = Array(2.2, 0.6), xMean = Array(2.9, 10.5),
-        xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
-        family = "poisson", link = "sqrt"), 2))
-
-    datasetGammaInverse = spark.createDataFrame(
-      sc.parallelize(generateGeneralizedLinearRegressionInput(
-        intercept = 2.5, coefficients = Array(2.2, 0.6), xMean = Array(2.9, 10.5),
-        xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
-        family = "gamma", link = "inverse"), 2))
-
-    datasetGammaIdentity = spark.createDataFrame(
-      sc.parallelize(generateGeneralizedLinearRegressionInput(
-        intercept = 2.5, coefficients = Array(2.2, 0.6), xMean = Array(2.9, 10.5),
-        xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
-        family = "gamma", link = "identity"), 2))
-
-    datasetGammaLog = spark.createDataFrame(
-      sc.parallelize(generateGeneralizedLinearRegressionInput(
-        intercept = 0.25, coefficients = Array(0.22, 0.06), xMean = Array(2.9, 10.5),
-        xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
-        family = "gamma", link = "log"), 2))
+    datasetPoissonLog = generateGeneralizedLinearRegressionInput(
+      intercept = 0.25, coefficients = Array(0.22, 0.06), xMean = Array(2.9, 10.5),
+      xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
+      family = "poisson", link = "log").toDF()
+
+    datasetPoissonIdentity = generateGeneralizedLinearRegressionInput(
+      intercept = 2.5, coefficients = Array(2.2, 0.6), xMean = Array(2.9, 10.5),
+      xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
+      family = "poisson", link = "identity").toDF()
+
+    datasetPoissonSqrt = generateGeneralizedLinearRegressionInput(
+      intercept = 2.5, coefficients = Array(2.2, 0.6), xMean = Array(2.9, 10.5),
+      xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
+      family = "poisson", link = "sqrt").toDF()
+
+    datasetGammaInverse = generateGeneralizedLinearRegressionInput(
+      intercept = 2.5, coefficients = Array(2.2, 0.6), xMean = Array(2.9, 10.5),
+      xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
+      family = "gamma", link = "inverse").toDF()
+
+    datasetGammaIdentity = generateGeneralizedLinearRegressionInput(
+      intercept = 2.5, coefficients = Array(2.2, 0.6), xMean = Array(2.9, 10.5),
+      xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
+      family = "gamma", link = "identity").toDF()
+
+    datasetGammaLog = generateGeneralizedLinearRegressionInput(
+      intercept = 0.25, coefficients = Array(0.22, 0.06), xMean = Array(2.9, 10.5),
+      xVariance = Array(0.7, 1.2), nPoints = 10000, seed, noiseLevel = 0.01,
+      family = "gamma", link = "log").toDF()
   }
 
   /**
@@ -540,12 +533,12 @@ class GeneralizedLinearRegressionSuite
        w <- c(1, 2, 3, 4)
        df <- as.data.frame(cbind(A, b))
      */
-    val datasetWithWeight = spark.createDataFrame(sc.parallelize(Seq(
+    val datasetWithWeight = Seq(
       Instance(17.0, 1.0, Vectors.dense(0.0, 5.0).toSparse),
       Instance(19.0, 2.0, Vectors.dense(1.0, 7.0)),
       Instance(23.0, 3.0, Vectors.dense(2.0, 11.0)),
       Instance(29.0, 4.0, Vectors.dense(3.0, 13.0))
-    ), 2))
+    ).toDF()
     /*
        R code:
 
@@ -668,12 +661,12 @@ class GeneralizedLinearRegressionSuite
        w <- c(1, 2, 3, 4)
        df <- as.data.frame(cbind(A, b))
      */
-    val datasetWithWeight = spark.createDataFrame(sc.parallelize(Seq(
+    val datasetWithWeight = Seq(
       Instance(1.0, 1.0, Vectors.dense(0.0, 5.0).toSparse),
       Instance(0.0, 2.0, Vectors.dense(1.0, 2.0)),
       Instance(1.0, 3.0, Vectors.dense(2.0, 1.0)),
       Instance(0.0, 4.0, Vectors.dense(3.0, 3.0))
-    ), 2))
+    ).toDF()
     /*
        R code:
 
@@ -782,12 +775,12 @@ class GeneralizedLinearRegressionSuite
        w <- c(1, 2, 3, 4)
        df <- as.data.frame(cbind(A, b))
      */
-    val datasetWithWeight = spark.createDataFrame(sc.parallelize(Seq(
+    val datasetWithWeight = Seq(
       Instance(2.0, 1.0, Vectors.dense(0.0, 5.0).toSparse),
       Instance(8.0, 2.0, Vectors.dense(1.0, 7.0)),
       Instance(3.0, 3.0, Vectors.dense(2.0, 11.0)),
       Instance(9.0, 4.0, Vectors.dense(3.0, 13.0))
-    ), 2))
+    ).toDF()
     /*
        R code:
 
@@ -899,12 +892,12 @@ class GeneralizedLinearRegressionSuite
        w <- c(1, 2, 3, 4)
        df <- as.data.frame(cbind(A, b))
      */
-    val datasetWithWeight = spark.createDataFrame(sc.parallelize(Seq(
+    val datasetWithWeight = Seq(
       Instance(2.0, 1.0, Vectors.dense(0.0, 5.0).toSparse),
       Instance(8.0, 2.0, Vectors.dense(1.0, 7.0)),
       Instance(3.0, 3.0, Vectors.dense(2.0, 11.0)),
       Instance(9.0, 4.0, Vectors.dense(3.0, 13.0))
-    ), 2))
+    ).toDF()
     /*
        R code:
 
@@ -1054,12 +1047,12 @@ class GeneralizedLinearRegressionSuite
       [1] 12.92681
       [1] 13.32836
      */
-    val dataset = spark.createDataFrame(Seq(
+    val dataset = Seq(
       LabeledPoint(1, Vectors.dense(5, 0)),
       LabeledPoint(0, Vectors.dense(2, 1)),
       LabeledPoint(1, Vectors.dense(1, 2)),
       LabeledPoint(0, Vectors.dense(3, 3))
-    ))
+    ).toDF()
     val expected = Seq(12.88188, 12.92681, 13.32836)
 
     var idx = 0
diff --git a/mllib/src/test/scala/org/apache/spark/ml/regression/IsotonicRegressionSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/regression/IsotonicRegressionSuite.scala
index 14d8a4e4e334536eb0a07d6dea9f958212caf5ac..c2c79476e8b2b0e6d363c39d3deb423aff09709e 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/regression/IsotonicRegressionSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/regression/IsotonicRegressionSuite.scala
@@ -27,15 +27,15 @@ import org.apache.spark.sql.{DataFrame, Row}
 class IsotonicRegressionSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   private def generateIsotonicInput(labels: Seq[Double]): DataFrame = {
-    spark.createDataFrame(
-      labels.zipWithIndex.map { case (label, i) => (label, i.toDouble, 1.0) }
-    ).toDF("label", "features", "weight")
+    labels.zipWithIndex.map { case (label, i) => (label, i.toDouble, 1.0) }
+      .toDF("label", "features", "weight")
   }
 
   private def generatePredictionInput(features: Seq[Double]): DataFrame = {
-    spark.createDataFrame(features.map(Tuple1.apply))
-      .toDF("features")
+    features.map(Tuple1.apply).toDF("features")
   }
 
   test("isotonic regression predictions") {
@@ -145,10 +145,10 @@ class IsotonicRegressionSuite
   }
 
   test("vector features column with feature index") {
-    val dataset = spark.createDataFrame(Seq(
+    val dataset = Seq(
       (4.0, Vectors.dense(0.0, 1.0)),
       (3.0, Vectors.dense(0.0, 2.0)),
-      (5.0, Vectors.sparse(2, Array(1), Array(3.0))))
+      (5.0, Vectors.sparse(2, Array(1), Array(3.0)))
     ).toDF("label", "features")
 
     val ir = new IsotonicRegression()
diff --git a/mllib/src/test/scala/org/apache/spark/ml/regression/LinearRegressionSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/regression/LinearRegressionSuite.scala
index 265f2f45c45fe2d6d62b15e5d14c283100719d50..5ae371b489aa55b813e103010f5feee199d5e1f5 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/regression/LinearRegressionSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/regression/LinearRegressionSuite.scala
@@ -32,6 +32,8 @@ import org.apache.spark.sql.{DataFrame, Row}
 class LinearRegressionSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   private val seed: Int = 42
   @transient var datasetWithDenseFeature: DataFrame = _
   @transient var datasetWithDenseFeatureWithoutIntercept: DataFrame = _
@@ -42,29 +44,27 @@ class LinearRegressionSuite
 
   override def beforeAll(): Unit = {
     super.beforeAll()
-    datasetWithDenseFeature = spark.createDataFrame(
-      sc.parallelize(LinearDataGenerator.generateLinearInput(
-        intercept = 6.3, weights = Array(4.7, 7.2), xMean = Array(0.9, -1.3),
-        xVariance = Array(0.7, 1.2), nPoints = 10000, seed, eps = 0.1), 2).map(_.asML))
+    datasetWithDenseFeature = sc.parallelize(LinearDataGenerator.generateLinearInput(
+      intercept = 6.3, weights = Array(4.7, 7.2), xMean = Array(0.9, -1.3),
+      xVariance = Array(0.7, 1.2), nPoints = 10000, seed, eps = 0.1), 2).map(_.asML).toDF()
     /*
        datasetWithDenseFeatureWithoutIntercept is not needed for correctness testing
        but is useful for illustrating training model without intercept
      */
-    datasetWithDenseFeatureWithoutIntercept = spark.createDataFrame(
-      sc.parallelize(LinearDataGenerator.generateLinearInput(
+    datasetWithDenseFeatureWithoutIntercept = sc.parallelize(
+      LinearDataGenerator.generateLinearInput(
         intercept = 0.0, weights = Array(4.7, 7.2), xMean = Array(0.9, -1.3),
-        xVariance = Array(0.7, 1.2), nPoints = 10000, seed, eps = 0.1), 2).map(_.asML))
+        xVariance = Array(0.7, 1.2), nPoints = 10000, seed, eps = 0.1), 2).map(_.asML).toDF()
 
     val r = new Random(seed)
     // When feature size is larger than 4096, normal optimizer is choosed
     // as the solver of linear regression in the case of "auto" mode.
     val featureSize = 4100
-    datasetWithSparseFeature = spark.createDataFrame(
-      sc.parallelize(LinearDataGenerator.generateLinearInput(
+    datasetWithSparseFeature = sc.parallelize(LinearDataGenerator.generateLinearInput(
         intercept = 0.0, weights = Seq.fill(featureSize)(r.nextDouble()).toArray,
         xMean = Seq.fill(featureSize)(r.nextDouble()).toArray,
         xVariance = Seq.fill(featureSize)(r.nextDouble()).toArray, nPoints = 200,
-        seed, eps = 0.1, sparsity = 0.7), 2).map(_.asML))
+        seed, eps = 0.1, sparsity = 0.7), 2).map(_.asML).toDF()
 
     /*
        R code:
@@ -74,13 +74,12 @@ class LinearRegressionSuite
        w <- c(1, 2, 3, 4)
        df <- as.data.frame(cbind(A, b))
      */
-    datasetWithWeight = spark.createDataFrame(
-      sc.parallelize(Seq(
-        Instance(17.0, 1.0, Vectors.dense(0.0, 5.0).toSparse),
-        Instance(19.0, 2.0, Vectors.dense(1.0, 7.0)),
-        Instance(23.0, 3.0, Vectors.dense(2.0, 11.0)),
-        Instance(29.0, 4.0, Vectors.dense(3.0, 13.0))
-      ), 2))
+    datasetWithWeight = sc.parallelize(Seq(
+      Instance(17.0, 1.0, Vectors.dense(0.0, 5.0).toSparse),
+      Instance(19.0, 2.0, Vectors.dense(1.0, 7.0)),
+      Instance(23.0, 3.0, Vectors.dense(2.0, 11.0)),
+      Instance(29.0, 4.0, Vectors.dense(3.0, 13.0))
+    ), 2).toDF()
 
     /*
        R code:
@@ -90,20 +89,18 @@ class LinearRegressionSuite
        w <- c(1, 2, 3, 4)
        df.const.label <- as.data.frame(cbind(A, b.const))
      */
-    datasetWithWeightConstantLabel = spark.createDataFrame(
-      sc.parallelize(Seq(
-        Instance(17.0, 1.0, Vectors.dense(0.0, 5.0).toSparse),
-        Instance(17.0, 2.0, Vectors.dense(1.0, 7.0)),
-        Instance(17.0, 3.0, Vectors.dense(2.0, 11.0)),
-        Instance(17.0, 4.0, Vectors.dense(3.0, 13.0))
-      ), 2))
-    datasetWithWeightZeroLabel = spark.createDataFrame(
-      sc.parallelize(Seq(
-        Instance(0.0, 1.0, Vectors.dense(0.0, 5.0).toSparse),
-        Instance(0.0, 2.0, Vectors.dense(1.0, 7.0)),
-        Instance(0.0, 3.0, Vectors.dense(2.0, 11.0)),
-        Instance(0.0, 4.0, Vectors.dense(3.0, 13.0))
-      ), 2))
+    datasetWithWeightConstantLabel = sc.parallelize(Seq(
+      Instance(17.0, 1.0, Vectors.dense(0.0, 5.0).toSparse),
+      Instance(17.0, 2.0, Vectors.dense(1.0, 7.0)),
+      Instance(17.0, 3.0, Vectors.dense(2.0, 11.0)),
+      Instance(17.0, 4.0, Vectors.dense(3.0, 13.0))
+    ), 2).toDF()
+    datasetWithWeightZeroLabel = sc.parallelize(Seq(
+      Instance(0.0, 1.0, Vectors.dense(0.0, 5.0).toSparse),
+      Instance(0.0, 2.0, Vectors.dense(1.0, 7.0)),
+      Instance(0.0, 3.0, Vectors.dense(2.0, 11.0)),
+      Instance(0.0, 4.0, Vectors.dense(3.0, 13.0))
+    ), 2).toDF()
   }
 
   /**
@@ -839,8 +836,7 @@ class LinearRegressionSuite
         }
         val data2 = weightedSignedData ++ weightedNoiseData
 
-        (spark.createDataFrame(sc.parallelize(data1, 4)),
-          spark.createDataFrame(sc.parallelize(data2, 4)))
+        (sc.parallelize(data1, 4).toDF(), sc.parallelize(data2, 4).toDF())
       }
 
       val trainer1a = (new LinearRegression).setFitIntercept(true)
diff --git a/mllib/src/test/scala/org/apache/spark/ml/tree/impl/GradientBoostedTreesSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/tree/impl/GradientBoostedTreesSuite.scala
index 5c50a88c8314a3080503d8119c8625c58ca9e9ae..4109a299091dce4e59b5643394eabd5838c2c945 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/tree/impl/GradientBoostedTreesSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/tree/impl/GradientBoostedTreesSuite.scala
@@ -32,13 +32,15 @@ import org.apache.spark.mllib.util.MLlibTestSparkContext
  */
 class GradientBoostedTreesSuite extends SparkFunSuite with MLlibTestSparkContext with Logging {
 
+  import testImplicits._
+
   test("runWithValidation stops early and performs better on a validation dataset") {
     // Set numIterations large enough so that it stops early.
     val numIterations = 20
     val trainRdd = sc.parallelize(OldGBTSuite.trainData, 2).map(_.asML)
     val validateRdd = sc.parallelize(OldGBTSuite.validateData, 2).map(_.asML)
-    val trainDF = spark.createDataFrame(trainRdd)
-    val validateDF = spark.createDataFrame(validateRdd)
+    val trainDF = trainRdd.toDF()
+    val validateDF = validateRdd.toDF()
 
     val algos = Array(Regression, Regression, Classification)
     val losses = Array(SquaredError, AbsoluteError, LogLoss)
diff --git a/mllib/src/test/scala/org/apache/spark/ml/tuning/CrossValidatorSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/tuning/CrossValidatorSuite.scala
index 750dc5bf01e6a6e26e7ef676173fbc8f9ca08ebe..7116265474f224a4e440e2d56f053fc8ce8f1e97 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/tuning/CrossValidatorSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/tuning/CrossValidatorSuite.scala
@@ -35,12 +35,13 @@ import org.apache.spark.sql.types.StructType
 class CrossValidatorSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
 
+  import testImplicits._
+
   @transient var dataset: Dataset[_] = _
 
   override def beforeAll(): Unit = {
     super.beforeAll()
-    dataset = spark.createDataFrame(
-      sc.parallelize(generateLogisticInput(1.0, 1.0, 100, 42), 2))
+    dataset = sc.parallelize(generateLogisticInput(1.0, 1.0, 100, 42), 2).toDF()
   }
 
   test("cross validation with logistic regression") {
@@ -67,9 +68,10 @@ class CrossValidatorSuite
   }
 
   test("cross validation with linear regression") {
-    val dataset = spark.createDataFrame(
-      sc.parallelize(LinearDataGenerator.generateLinearInput(
-        6.3, Array(4.7, 7.2), Array(0.9, -1.3), Array(0.7, 1.2), 100, 42, 0.1), 2).map(_.asML))
+    val dataset = sc.parallelize(
+      LinearDataGenerator.generateLinearInput(
+        6.3, Array(4.7, 7.2), Array(0.9, -1.3), Array(0.7, 1.2), 100, 42, 0.1), 2)
+      .map(_.asML).toDF()
 
     val trainer = new LinearRegression().setSolver("l-bfgs")
     val lrParamMaps = new ParamGridBuilder()
diff --git a/mllib/src/test/scala/org/apache/spark/ml/tuning/TrainValidationSplitSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/tuning/TrainValidationSplitSuite.scala
index 9971371e4728890e6ad320f4bfddee287e890fcf..87100ae2e342fab7088e68881975bd198faee999 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/tuning/TrainValidationSplitSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/tuning/TrainValidationSplitSuite.scala
@@ -33,9 +33,11 @@ import org.apache.spark.sql.types.StructType
 
 class TrainValidationSplitSuite
   extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
+
+  import testImplicits._
+
   test("train validation with logistic regression") {
-    val dataset = spark.createDataFrame(
-      sc.parallelize(generateLogisticInput(1.0, 1.0, 100, 42), 2))
+    val dataset = sc.parallelize(generateLogisticInput(1.0, 1.0, 100, 42), 2).toDF()
 
     val lr = new LogisticRegression
     val lrParamMaps = new ParamGridBuilder()
@@ -58,9 +60,10 @@ class TrainValidationSplitSuite
   }
 
   test("train validation with linear regression") {
-    val dataset = spark.createDataFrame(
-        sc.parallelize(LinearDataGenerator.generateLinearInput(
-            6.3, Array(4.7, 7.2), Array(0.9, -1.3), Array(0.7, 1.2), 100, 42, 0.1), 2).map(_.asML))
+    val dataset = sc.parallelize(
+      LinearDataGenerator.generateLinearInput(
+        6.3, Array(4.7, 7.2), Array(0.9, -1.3), Array(0.7, 1.2), 100, 42, 0.1), 2)
+      .map(_.asML).toDF()
 
     val trainer = new LinearRegression().setSolver("l-bfgs")
     val lrParamMaps = new ParamGridBuilder()
diff --git a/mllib/src/test/scala/org/apache/spark/mllib/util/MLUtilsSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/util/MLUtilsSuite.scala
index 6aa93c90760076bff595bae19cc20300d08560ea..e4e9be39ff6f9c012f52f1743a99c8e8c9993b04 100644
--- a/mllib/src/test/scala/org/apache/spark/mllib/util/MLUtilsSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/mllib/util/MLUtilsSuite.scala
@@ -37,6 +37,8 @@ import org.apache.spark.util.Utils
 
 class MLUtilsSuite extends SparkFunSuite with MLlibTestSparkContext {
 
+  import testImplicits._
+
   test("epsilon computation") {
     assert(1.0 + EPSILON > 1.0, s"EPSILON is too small: $EPSILON.")
     assert(1.0 + EPSILON / 2.0 === 1.0, s"EPSILON is too big: $EPSILON.")
@@ -255,9 +257,7 @@ class MLUtilsSuite extends SparkFunSuite with MLlibTestSparkContext {
     val z = Vectors.dense(4.0)
     val p = (5.0, z)
     val w = Vectors.dense(6.0).asML
-    val df = spark.createDataFrame(Seq(
-      (0, x, y, p, w)
-    )).toDF("id", "x", "y", "p", "w")
+    val df = Seq((0, x, y, p, w)).toDF("id", "x", "y", "p", "w")
       .withColumn("x", col("x"), metadata)
     val newDF1 = convertVectorColumnsToML(df)
     assert(newDF1.schema("x").metadata === metadata, "Metadata should be preserved.")
@@ -282,9 +282,7 @@ class MLUtilsSuite extends SparkFunSuite with MLlibTestSparkContext {
     val z = Vectors.dense(4.0).asML
     val p = (5.0, z)
     val w = Vectors.dense(6.0)
-    val df = spark.createDataFrame(Seq(
-      (0, x, y, p, w)
-    )).toDF("id", "x", "y", "p", "w")
+    val df = Seq((0, x, y, p, w)).toDF("id", "x", "y", "p", "w")
       .withColumn("x", col("x"), metadata)
     val newDF1 = convertVectorColumnsFromML(df)
     assert(newDF1.schema("x").metadata === metadata, "Metadata should be preserved.")
@@ -309,9 +307,7 @@ class MLUtilsSuite extends SparkFunSuite with MLlibTestSparkContext {
     val z = Matrices.ones(1, 1)
     val p = (5.0, z)
     val w = Matrices.dense(1, 1, Array(4.5)).asML
-    val df = spark.createDataFrame(Seq(
-      (0, x, y, p, w)
-    )).toDF("id", "x", "y", "p", "w")
+    val df = Seq((0, x, y, p, w)).toDF("id", "x", "y", "p", "w")
       .withColumn("x", col("x"), metadata)
     val newDF1 = convertMatrixColumnsToML(df)
     assert(newDF1.schema("x").metadata === metadata, "Metadata should be preserved.")
@@ -336,9 +332,7 @@ class MLUtilsSuite extends SparkFunSuite with MLlibTestSparkContext {
     val z = Matrices.ones(1, 1).asML
     val p = (5.0, z)
     val w = Matrices.dense(1, 1, Array(4.5))
-    val df = spark.createDataFrame(Seq(
-      (0, x, y, p, w)
-    )).toDF("id", "x", "y", "p", "w")
+    val df = Seq((0, x, y, p, w)).toDF("id", "x", "y", "p", "w")
       .withColumn("x", col("x"), metadata)
     val newDF1 = convertMatrixColumnsFromML(df)
     assert(newDF1.schema("x").metadata === metadata, "Metadata should be preserved.")
diff --git a/mllib/src/test/scala/org/apache/spark/mllib/util/MLlibTestSparkContext.scala b/mllib/src/test/scala/org/apache/spark/mllib/util/MLlibTestSparkContext.scala
index db56aff63102c27e0cb137a1856d209e3497a845..6bb7ed9c9513c1e49f2cfe674da677126b6182a5 100644
--- a/mllib/src/test/scala/org/apache/spark/mllib/util/MLlibTestSparkContext.scala
+++ b/mllib/src/test/scala/org/apache/spark/mllib/util/MLlibTestSparkContext.scala
@@ -23,7 +23,7 @@ import org.scalatest.Suite
 
 import org.apache.spark.SparkContext
 import org.apache.spark.ml.util.TempDirectory
-import org.apache.spark.sql.SparkSession
+import org.apache.spark.sql.{SparkSession, SQLContext, SQLImplicits}
 import org.apache.spark.util.Utils
 
 trait MLlibTestSparkContext extends TempDirectory { self: Suite =>
@@ -55,4 +55,15 @@ trait MLlibTestSparkContext extends TempDirectory { self: Suite =>
       super.afterAll()
     }
   }
+
+  /**
+   * A helper object for importing SQL implicits.
+   *
+   * Note that the alternative of importing `spark.implicits._` is not possible here.
+   * This is because we create the [[SQLContext]] immediately before the first test is run,
+   * but the implicits import is needed in the constructor.
+   */
+  protected object testImplicits extends SQLImplicits {
+    protected override def _sqlContext: SQLContext = self.spark.sqlContext
+  }
 }