diff --git a/R/pkg/R/mllib.R b/R/pkg/R/mllib.R index 7126b7cde4bd79a35f4a2026b66e8076312cf5f3..f23e1c7f1fce4713c45bf7e9ae728a9ea5546d0b 100644 --- a/R/pkg/R/mllib.R +++ b/R/pkg/R/mllib.R @@ -106,7 +106,7 @@ setMethod("summary", signature(object = "PipelineModel"), coefficients <- matrix(coefficients, ncol = 4) colnames(coefficients) <- c("Estimate", "Std. Error", "t value", "Pr(>|t|)") rownames(coefficients) <- unlist(features) - return(list(DevianceResiduals = devianceResiduals, Coefficients = coefficients)) + return(list(devianceResiduals = devianceResiduals, coefficients = coefficients)) } else { coefficients <- as.matrix(unlist(coefficients)) colnames(coefficients) <- c("Estimate") diff --git a/R/pkg/inst/tests/test_mllib.R b/R/pkg/inst/tests/test_mllib.R index 42287ea19adc550456bfd3a21ce5d3fc1e407124..d497ad8c9daa3b4dd7e2677383a906fa73d5ecab 100644 --- a/R/pkg/inst/tests/test_mllib.R +++ b/R/pkg/inst/tests/test_mllib.R @@ -72,22 +72,17 @@ test_that("feature interaction vs native glm", { test_that("summary coefficients match with native glm", { training <- createDataFrame(sqlContext, iris) stats <- summary(glm(Sepal_Width ~ Sepal_Length + Species, data = training, solver = "normal")) - coefs <- unlist(stats$Coefficients) - devianceResiduals <- unlist(stats$DevianceResiduals) + coefs <- unlist(stats$coefficients) + devianceResiduals <- unlist(stats$devianceResiduals) - rCoefs <- as.vector(coef(glm(Sepal.Width ~ Sepal.Length + Species, data = iris))) - rStdError <- c(0.23536, 0.04630, 0.07207, 0.09331) - rTValue <- c(7.123, 7.557, -13.644, -10.798) - rPValue <- c(0.0, 0.0, 0.0, 0.0) + rStats <- summary(glm(Sepal.Width ~ Sepal.Length + Species, data = iris)) + rCoefs <- unlist(rStats$coefficients) rDevianceResiduals <- c(-0.95096, 0.72918) - expect_true(all(abs(rCoefs - coefs[1:4]) < 1e-6)) - expect_true(all(abs(rStdError - coefs[5:8]) < 1e-5)) - expect_true(all(abs(rTValue - coefs[9:12]) < 1e-3)) - expect_true(all(abs(rPValue - coefs[13:16]) < 1e-6)) + expect_true(all(abs(rCoefs - coefs) < 1e-5)) expect_true(all(abs(rDevianceResiduals - devianceResiduals) < 1e-5)) expect_true(all( - rownames(stats$Coefficients) == + rownames(stats$coefficients) == c("(Intercept)", "Sepal_Length", "Species_versicolor", "Species_virginica"))) }) @@ -96,21 +91,15 @@ test_that("summary coefficients match with native glm of family 'binomial'", { training <- filter(df, df$Species != "setosa") stats <- summary(glm(Species ~ Sepal_Length + Sepal_Width, data = training, family = "binomial")) - coefs <- as.vector(stats$Coefficients) + coefs <- as.vector(stats$coefficients[,1]) rTraining <- iris[iris$Species %in% c("versicolor","virginica"),] rCoefs <- as.vector(coef(glm(Species ~ Sepal.Length + Sepal.Width, data = rTraining, family = binomial(link = "logit")))) - rStdError <- c(3.0974, 0.5169, 0.8628) - rTValue <- c(-4.212, 3.680, 0.469) - rPValue <- c(0.000, 0.000, 0.639) - - expect_true(all(abs(rCoefs - coefs[1:3]) < 1e-4)) - expect_true(all(abs(rStdError - coefs[4:6]) < 1e-4)) - expect_true(all(abs(rTValue - coefs[7:9]) < 1e-3)) - expect_true(all(abs(rPValue - coefs[10:12]) < 1e-3)) + + expect_true(all(abs(rCoefs - coefs) < 1e-4)) expect_true(all( - rownames(stats$Coefficients) == + rownames(stats$coefficients) == c("(Intercept)", "Sepal_Length", "Sepal_Width"))) })