diff --git a/core/src/main/scala/spark/rdd/DoubleRDDFunctions.scala b/core/src/main/scala/spark/DoubleRDDFunctions.scala
similarity index 60%
rename from core/src/main/scala/spark/rdd/DoubleRDDFunctions.scala
rename to core/src/main/scala/spark/DoubleRDDFunctions.scala
index d232ddeb7c6c3b797d273b848f152b8cb3288972..b2a0e2b631e7aabcd8892a93aec2d0bbbbb28a35 100644
--- a/core/src/main/scala/spark/rdd/DoubleRDDFunctions.scala
+++ b/core/src/main/scala/spark/DoubleRDDFunctions.scala
@@ -1,39 +1,52 @@
-package spark.rdd
+package spark
 
 import spark.partial.BoundedDouble
 import spark.partial.MeanEvaluator
 import spark.partial.PartialResult
 import spark.partial.SumEvaluator
-
-import spark.Logging
-import spark.RDD
-import spark.TaskContext
 import spark.util.StatCounter
 
 /**
  * Extra functions available on RDDs of Doubles through an implicit conversion.
+ * Import `spark.SparkContext._` at the top of your program to use these functions.
  */
 class DoubleRDDFunctions(self: RDD[Double]) extends Logging with Serializable {
+  /** Add up the elements in this RDD. */
   def sum(): Double = {
     self.reduce(_ + _)
   }
 
+  /**
+   * Return a [[spark.util.StatCounter]] object that captures the mean, variance and count
+   * of the RDD's elements in one operation.
+   */
   def stats(): StatCounter = {
     self.mapPartitions(nums => Iterator(StatCounter(nums))).reduce((a, b) => a.merge(b))
   }
 
+  /** Compute the mean of this RDD's elements. */
   def mean(): Double = stats().mean
 
+  /** Compute the variance of this RDD's elements. */
   def variance(): Double = stats().variance
 
+  /** Compute the standard deviation of this RDD's elements. */
   def stdev(): Double = stats().stdev
 
+  /** 
+   * Compute the sample standard deviation of this RDD's elements (which corrects for bias in
+   * estimating the standard deviation by dividing by N-1 instead of N).
+   */
+  def sampleStdev(): Double = stats().stdev
+
+  /** (Experimental) Approximate operation to return the mean within a timeout. */
   def meanApprox(timeout: Long, confidence: Double = 0.95): PartialResult[BoundedDouble] = {
     val processPartition = (ctx: TaskContext, ns: Iterator[Double]) => StatCounter(ns)
     val evaluator = new MeanEvaluator(self.splits.size, confidence)
     self.context.runApproximateJob(self, processPartition, evaluator, timeout)
   }
 
+  /** (Experimental) Approximate operation to return the sum within a timeout. */
   def sumApprox(timeout: Long, confidence: Double = 0.95): PartialResult[BoundedDouble] = {
     val processPartition = (ctx: TaskContext, ns: Iterator[Double]) => StatCounter(ns)
     val evaluator = new SumEvaluator(self.splits.size, confidence)
diff --git a/core/src/main/scala/spark/HadoopWriter.scala b/core/src/main/scala/spark/HadoopWriter.scala
index ebb51607e6805ae32c88b20bc67fc393cb83dcbc..ca584d2d5a4ae6d85782fb838bd82570fb09fd7c 100644
--- a/core/src/main/scala/spark/HadoopWriter.scala
+++ b/core/src/main/scala/spark/HadoopWriter.scala
@@ -16,9 +16,12 @@ import spark.Logging
 import spark.SerializableWritable
 
 /**
- * Saves an RDD using a Hadoop OutputFormat as specified by a JobConf. The JobConf should also 
- * contain an output key class, an output value class, a filename to write to, etc exactly like in 
- * a Hadoop job.
+ * An internal helper class that saves an RDD using a Hadoop OutputFormat. This is only public
+ * because we need to access this class from the `spark` package to use some package-private Hadoop
+ * functions, but this class should not be used directly by users.
+ *
+ * Saves the RDD using a JobConf, which should contain an output key class, an output value class,
+ * a filename to write to, etc, exactly like in a Hadoop MapReduce job.
  */
 class HadoopWriter(@transient jobConf: JobConf) extends Logging with Serializable {
   
diff --git a/core/src/main/scala/spark/rdd/PairRDDFunctions.scala b/core/src/main/scala/spark/PairRDDFunctions.scala
similarity index 61%
rename from core/src/main/scala/spark/rdd/PairRDDFunctions.scala
rename to core/src/main/scala/spark/PairRDDFunctions.scala
index 2a94ea263ae9999be1f4c9d5497d4d239aa474dc..0240fd95c76bb2a3f60fde23ce227ead6a048c84 100644
--- a/core/src/main/scala/spark/rdd/PairRDDFunctions.scala
+++ b/core/src/main/scala/spark/PairRDDFunctions.scala
@@ -1,4 +1,4 @@
-package spark.rdd
+package spark
 
 import java.io.EOFException
 import java.io.ObjectInputStream
@@ -36,27 +36,31 @@ import org.apache.hadoop.mapreduce.TaskAttemptContext
 
 import spark.partial.BoundedDouble
 import spark.partial.PartialResult
-import spark.Aggregator
-import spark.HashPartitioner
-import spark.Logging
-import spark.OneToOneDependency
-import spark.Partitioner
-import spark.RangePartitioner
-import spark.RDD
-import spark.SerializableWritable
+import spark.rdd._
 import spark.SparkContext._
-import spark.SparkException
-import spark.Split
-import spark.TaskContext
 
 /**
  * Extra functions available on RDDs of (key, value) pairs through an implicit conversion.
+ * Import `spark.SparkContext._` at the top of your program to use these functions.
  */
 class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     self: RDD[(K, V)])
   extends Logging
   with Serializable {
 
+  /**
+   * Generic function to combine the elements for each key using a custom set of aggregation 
+   * functions. Turns an RDD[(K, V)] into a result of type RDD[(K, C)], for a "combined type" C
+   * Note that V and C can be different -- for example, one might group an RDD of type
+   * (Int, Int) into an RDD of type (Int, Seq[Int]). Users provide three functions:
+   * 
+   * - `createCombiner`, which turns a V into a C (e.g., creates a one-element list)
+   * - `mergeValue`, to merge a V into a C (e.g., adds it to the end of a list)
+   * - `mergeCombiners`, to combine two C's into a single one.
+   *
+   * In addition, users can control the partitioning of the output RDD, and whether to perform
+   * map-side aggregation (if a mapper can produce multiple items with the same key).
+   */
   def combineByKey[C](createCombiner: V => C,
       mergeValue: (C, V) => C,
       mergeCombiners: (C, C) => C,
@@ -74,6 +78,9 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     new ShuffledAggregatedRDD(self, aggregator, partitioner)
   }
 
+  /**
+   * Simplified version of combineByKey that hash-partitions the output RDD.
+   */
   def combineByKey[C](createCombiner: V => C,
       mergeValue: (C, V) => C,
       mergeCombiners: (C, C) => C,
@@ -81,10 +88,20 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     combineByKey(createCombiner, mergeValue, mergeCombiners, new HashPartitioner(numSplits))
   }
 
+  /**
+   * Merge the values for each key using an associative reduce function. This will also perform
+   * the merging locally on each mapper before sending results to a reducer, similarly to a
+   * "combiner" in MapReduce.
+   */
   def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = {
     combineByKey[V]((v: V) => v, func, func, partitioner)
   }
 
+  /**
+   * Merge the values for each key using an associative reduce function, but return the results
+   * immediately to the master as a Map. This will also perform the merging locally on each mapper
+   * before sending results to a reducer, similarly to a "combiner" in MapReduce.
+   */
   def reduceByKeyLocally(func: (V, V) => V): Map[K, V] = {
     def reducePartition(iter: Iterator[(K, V)]): Iterator[JHashMap[K, V]] = {
       val map = new JHashMap[K, V]
@@ -106,22 +123,34 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     self.mapPartitions(reducePartition).reduce(mergeMaps)
   }
 
-  // Alias for backwards compatibility
+  /** Alias for reduceByKeyLocally */
   def reduceByKeyToDriver(func: (V, V) => V): Map[K, V] = reduceByKeyLocally(func)
 
-  // TODO: This should probably be a distributed version
+  /** Count the number of elements for each key, and return the result to the master as a Map. */
   def countByKey(): Map[K, Long] = self.map(_._1).countByValue()
 
-  // TODO: This should probably be a distributed version
+  /** 
+   * (Experimental) Approximate version of countByKey that can return a partial result if it does
+   * not finish within a timeout.
+   */
   def countByKeyApprox(timeout: Long, confidence: Double = 0.95)
       : PartialResult[Map[K, BoundedDouble]] = {
     self.map(_._1).countByValueApprox(timeout, confidence)
   }
 
+  /**
+   * Merge the values for each key using an associative reduce function. This will also perform
+   * the merging locally on each mapper before sending results to a reducer, similarly to a
+   * "combiner" in MapReduce. Output will be hash-partitioned with numSplits splits.
+   */
   def reduceByKey(func: (V, V) => V, numSplits: Int): RDD[(K, V)] = {
     reduceByKey(new HashPartitioner(numSplits), func)
   }
 
+  /**
+   * Group the values for each key in the RDD into a single sequence. Allows controlling the
+   * partitioning of the resulting key-value pair RDD by passing a Partitioner.
+   */
   def groupByKey(partitioner: Partitioner): RDD[(K, Seq[V])] = {
     def createCombiner(v: V) = ArrayBuffer(v)
     def mergeValue(buf: ArrayBuffer[V], v: V) = buf += v
@@ -131,16 +160,20 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     bufs.asInstanceOf[RDD[(K, Seq[V])]]
   }
 
+  /**
+   * Group the values for each key in the RDD into a single sequence. Hash-partitions the
+   * resulting RDD with into `numSplits` partitions.
+   */
   def groupByKey(numSplits: Int): RDD[(K, Seq[V])] = {
     groupByKey(new HashPartitioner(numSplits))
   }
 
   /**
-   * Repartition the RDD using the specified partitioner. If mapSideCombine is
-   * true, Spark will group values of the same key together on the map side
-   * before the repartitioning. If a large number of duplicated keys are
-   * expected, and the size of the keys are large, mapSideCombine should be set
-   * to true.
+   * Return a copy of the RDD partitioned using the specified partitioner. If `mapSideCombine`
+   * is true, Spark will group values of the same key together on the map side before the
+   * repartitioning, to only send each key over the network once. If a large number of
+   * duplicated keys are expected, and the size of the keys are large, `mapSideCombine` should
+   * be set to true.
    */
   def partitionBy(partitioner: Partitioner, mapSideCombine: Boolean = false): RDD[(K, V)] = {
     if (mapSideCombine) {
@@ -155,6 +188,11 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     }
   }
 
+  /**
+   * Merge the values for each key using an associative reduce function. This will also perform
+   * the merging locally on each mapper before sending results to a reducer, similarly to a
+   * "combiner" in MapReduce.
+   */
   def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))] = {
     this.cogroup(other, partitioner).flatMapValues {
       case (vs, ws) =>
@@ -162,6 +200,12 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     }
   }
 
+  /**
+   * Perform a left outer join of `this` and `other`. For each element (k, v) in `this`, the
+   * resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`, or the
+   * pair (k, (v, None)) if no elements in `other` have key k. Uses the given Partitioner to
+   * partition the output RDD.
+   */
   def leftOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, Option[W]))] = {
     this.cogroup(other, partitioner).flatMapValues {
       case (vs, ws) =>
@@ -173,6 +217,12 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     }
   }
 
+  /**
+   * Perform a right outer join of `this` and `other`. For each element (k, w) in `other`, the
+   * resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`, or the
+   * pair (k, (None, w)) if no elements in `this` have key k. Uses the given Partitioner to
+   * partition the output RDD.
+   */
   def rightOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner)
       : RDD[(K, (Option[V], W))] = {
     this.cogroup(other, partitioner).flatMapValues {
@@ -185,56 +235,117 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     }
   }
 
-  def combineByKey[C](createCombiner: V => C,
-      mergeValue: (C, V) => C,
-      mergeCombiners: (C, C) => C) : RDD[(K, C)] = {
+  /** 
+   * Simplified version of combineByKey that hash-partitions the resulting RDD using the default
+   * parallelism level.
+   */
+  def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C)
+      : RDD[(K, C)] = {
     combineByKey(createCombiner, mergeValue, mergeCombiners, defaultPartitioner(self))
   }
 
+  /**
+   * Merge the values for each key using an associative reduce function. This will also perform
+   * the merging locally on each mapper before sending results to a reducer, similarly to a
+   * "combiner" in MapReduce. Output will be hash-partitioned with the default parallelism level.
+   */
   def reduceByKey(func: (V, V) => V): RDD[(K, V)] = {
     reduceByKey(defaultPartitioner(self), func)
   }
 
+  /**
+   * Group the values for each key in the RDD into a single sequence. Hash-partitions the
+   * resulting RDD with the default parallelism level.
+   */
   def groupByKey(): RDD[(K, Seq[V])] = {
     groupByKey(defaultPartitioner(self))
   }
 
+  /**
+   * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each
+   * pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and
+   * (k, v2) is in `other`. Performs a hash join across the cluster.
+   */
   def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))] = {
     join(other, defaultPartitioner(self, other))
   }
 
+  /**
+   * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each
+   * pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and
+   * (k, v2) is in `other`. Performs a hash join across the cluster.
+   */
   def join[W](other: RDD[(K, W)], numSplits: Int): RDD[(K, (V, W))] = {
     join(other, new HashPartitioner(numSplits))
   }
 
+  /**
+   * Perform a left outer join of `this` and `other`. For each element (k, v) in `this`, the
+   * resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`, or the
+   * pair (k, (v, None)) if no elements in `other` have key k. Hash-partitions the output
+   * using the default level of parallelism.
+   */
   def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))] = {
     leftOuterJoin(other, defaultPartitioner(self, other))
   }
 
+  /**
+   * Perform a left outer join of `this` and `other`. For each element (k, v) in `this`, the
+   * resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`, or the
+   * pair (k, (v, None)) if no elements in `other` have key k. Hash-partitions the output
+   * into `numSplits` partitions.
+   */
   def leftOuterJoin[W](other: RDD[(K, W)], numSplits: Int): RDD[(K, (V, Option[W]))] = {
     leftOuterJoin(other, new HashPartitioner(numSplits))
   }
 
+  /**
+   * Perform a right outer join of `this` and `other`. For each element (k, w) in `other`, the
+   * resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`, or the
+   * pair (k, (None, w)) if no elements in `this` have key k. Hash-partitions the resulting
+   * RDD using the default parallelism level.
+   */
   def rightOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (Option[V], W))] = {
     rightOuterJoin(other, defaultPartitioner(self, other))
   }
 
+  /**
+   * Perform a right outer join of `this` and `other`. For each element (k, w) in `other`, the
+   * resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`, or the
+   * pair (k, (None, w)) if no elements in `this` have key k. Hash-partitions the resulting
+   * RDD into the given number of partitions.
+   */
   def rightOuterJoin[W](other: RDD[(K, W)], numSplits: Int): RDD[(K, (Option[V], W))] = {
     rightOuterJoin(other, new HashPartitioner(numSplits))
   }
 
+  /**
+   * Return the key-value pairs in this RDD to the master as a Map.
+   */
   def collectAsMap(): Map[K, V] = HashMap(self.collect(): _*)
 
+  /**
+   * Pass each value in the key-value pair RDD through a map function without changing the keys;
+   * this also retains the original RDD's partitioning.
+   */
   def mapValues[U](f: V => U): RDD[(K, U)] = {
     val cleanF = self.context.clean(f)
     new MappedValuesRDD(self, cleanF)
   }
 
+  /**
+   * Pass each value in the key-value pair RDD through a flatMap function without changing the
+   * keys; this also retains the original RDD's partitioning.
+   */
   def flatMapValues[U](f: V => TraversableOnce[U]): RDD[(K, U)] = {
     val cleanF = self.context.clean(f)
     new FlatMappedValuesRDD(self, cleanF)
   }
 
+  /**
+   * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
+   * list of values for that key in `this` as well as `other`.
+   */
   def cogroup[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (Seq[V], Seq[W]))] = {
     val cg = new CoGroupedRDD[K](
         Seq(self.asInstanceOf[RDD[(_, _)]], other.asInstanceOf[RDD[(_, _)]]),
@@ -246,6 +357,10 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     }
   }
 
+  /**
+   * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a
+   * tuple with the list of values for that key in `this`, `other1` and `other2`.
+   */
   def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], partitioner: Partitioner)
       : RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = {
     val cg = new CoGroupedRDD[K](
@@ -260,28 +375,46 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     }
   }
 
+  /**
+   * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
+   * list of values for that key in `this` as well as `other`.
+   */
   def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Seq[V], Seq[W]))] = {
     cogroup(other, defaultPartitioner(self, other))
   }
 
+  /**
+   * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a
+   * tuple with the list of values for that key in `this`, `other1` and `other2`.
+   */
   def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)])
       : RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = {
     cogroup(other1, other2, defaultPartitioner(self, other1, other2))
   }
 
+  /**
+   * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
+   * list of values for that key in `this` as well as `other`.
+   */
   def cogroup[W](other: RDD[(K, W)], numSplits: Int): RDD[(K, (Seq[V], Seq[W]))] = {
     cogroup(other, new HashPartitioner(numSplits))
   }
 
+  /**
+   * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a
+   * tuple with the list of values for that key in `this`, `other1` and `other2`.
+   */
   def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], numSplits: Int)
       : RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = {
     cogroup(other1, other2, new HashPartitioner(numSplits))
   }
 
+  /** Alias for cogroup. */
   def groupWith[W](other: RDD[(K, W)]): RDD[(K, (Seq[V], Seq[W]))] = {
     cogroup(other, defaultPartitioner(self, other))
   }
 
+  /** Alias for cogroup. */
   def groupWith[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)])
       : RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = {
     cogroup(other1, other2, defaultPartitioner(self, other1, other2))
@@ -298,6 +431,10 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     return new HashPartitioner(self.context.defaultParallelism)
   }
 
+  /**
+   * Return the list of values in the RDD for key `key`. This operation is done efficiently if the
+   * RDD has a known partitioner by only searching the partition that the key maps to.
+   */
   def lookup(key: K): Seq[V] = {
     self.partitioner match {
       case Some(p) =>
@@ -316,14 +453,26 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     }
   }
 
+  /**
+   * Output the RDD to any Hadoop-supported file system, using a Hadoop `OutputFormat` class
+   * supporting the key and value types K and V in this RDD.
+   */
   def saveAsHadoopFile[F <: OutputFormat[K, V]](path: String)(implicit fm: ClassManifest[F]) {
     saveAsHadoopFile(path, getKeyClass, getValueClass, fm.erasure.asInstanceOf[Class[F]])
   }
 
+  /**
+   * Output the RDD to any Hadoop-supported file system, using a new Hadoop API `OutputFormat`
+   * (mapreduce.OutputFormat) object supporting the key and value types K and V in this RDD.
+   */
   def saveAsNewAPIHadoopFile[F <: NewOutputFormat[K, V]](path: String)(implicit fm: ClassManifest[F]) {
     saveAsNewAPIHadoopFile(path, getKeyClass, getValueClass, fm.erasure.asInstanceOf[Class[F]])
   }
 
+  /**
+   * Output the RDD to any Hadoop-supported file system, using a new Hadoop API `OutputFormat`
+   * (mapreduce.OutputFormat) object supporting the key and value types K and V in this RDD.
+   */
   def saveAsNewAPIHadoopFile(
       path: String,
       keyClass: Class[_],
@@ -332,6 +481,10 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     saveAsNewAPIHadoopFile(path, keyClass, valueClass, outputFormatClass, new Configuration)
   }
 
+  /**
+   * Output the RDD to any Hadoop-supported file system, using a new Hadoop API `OutputFormat`
+   * (mapreduce.OutputFormat) object supporting the key and value types K and V in this RDD.
+   */
   def saveAsNewAPIHadoopFile(
       path: String,
       keyClass: Class[_],
@@ -379,6 +532,10 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     jobCommitter.cleanupJob(jobTaskContext)
   }
 
+  /**
+   * Output the RDD to any Hadoop-supported file system, using a Hadoop `OutputFormat` class
+   * supporting the key and value types K and V in this RDD.
+   */
   def saveAsHadoopFile(
       path: String,
       keyClass: Class[_],
@@ -394,6 +551,12 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     saveAsHadoopDataset(conf)
   }
 
+  /**
+   * Output the RDD to any Hadoop-supported storage system, using a Hadoop JobConf object for
+   * that storage system. The JobConf should set an OutputFormat and any output paths required
+   * (e.g. a table name to write to) in the same way as it would be configured for a Hadoop
+   * MapReduce job.
+   */
   def saveAsHadoopDataset(conf: JobConf) {
     val outputFormatClass = conf.getOutputFormat
     val keyClass = conf.getOutputKeyClass
@@ -436,21 +599,33 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
     writer.cleanup()
   }
 
-  def getKeyClass() = implicitly[ClassManifest[K]].erasure
+  private[spark] def getKeyClass() = implicitly[ClassManifest[K]].erasure
 
-  def getValueClass() = implicitly[ClassManifest[V]].erasure
+  private[spark] def getValueClass() = implicitly[ClassManifest[V]].erasure
 }
 
+/**
+ * Extra functions available on RDDs of (key, value) pairs where the key is sortable through
+ * an implicit conversion. Import `spark.SparkContext._` at the top of your program to use these
+ * functions. They will work with any key type that has a `scala.math.Ordered` implementation.
+ */
 class OrderedRDDFunctions[K <% Ordered[K]: ClassManifest, V: ClassManifest](
   self: RDD[(K, V)])
   extends Logging
   with Serializable {
 
+  /**
+   * Sort the RDD by key, so that each partition contains a sorted range of the elements. Calling
+   * `collect` or `save` on the resulting RDD will return or output an ordered list of records
+   * (in the `save` case, they will be written to multiple `part-X` files in the filesystem, in
+   * order of the keys).
+   */
   def sortByKey(ascending: Boolean = true, numSplits: Int = self.splits.size): RDD[(K,V)] = {
     new ShuffledSortedRDD(self, ascending, numSplits)
   }
 }
 
+private[spark]
 class MappedValuesRDD[K, V, U](prev: RDD[(K, V)], f: V => U) extends RDD[(K, U)](prev.context) {
   override def splits = prev.splits
   override val dependencies = List(new OneToOneDependency(prev))
@@ -458,6 +633,7 @@ class MappedValuesRDD[K, V, U](prev: RDD[(K, V)], f: V => U) extends RDD[(K, U)]
   override def compute(split: Split) = prev.iterator(split).map{case (k, v) => (k, f(v))}
 }
 
+private[spark]
 class FlatMappedValuesRDD[K, V, U](prev: RDD[(K, V)], f: V => TraversableOnce[U])
   extends RDD[(K, U)](prev.context) {
 
diff --git a/core/src/main/scala/spark/RDD.scala b/core/src/main/scala/spark/RDD.scala
index 17869fb31b69055b12f93e979756438737410495..984738ef738362f122212c76d96e87b7e0d2237d 100644
--- a/core/src/main/scala/spark/RDD.scala
+++ b/core/src/main/scala/spark/RDD.scala
@@ -378,7 +378,8 @@ abstract class RDD[T: ClassManifest](@transient sc: SparkContext) extends Serial
   }
 
   /**
-   * Approximate version of count() that returns a potentially incomplete result after a timeout.
+   * (Experimental) Approximate version of count() that returns a potentially incomplete result
+   * within a timeout, even if not all tasks have finished.
    */
   def countApprox(timeout: Long, confidence: Double = 0.95): PartialResult[BoundedDouble] = {
     val countElements: (TaskContext, Iterator[T]) => Long = { (ctx, iter) =>
@@ -394,13 +395,11 @@ abstract class RDD[T: ClassManifest](@transient sc: SparkContext) extends Serial
   }
 
   /**
-   * Return the count of each unique value in this RDD as a map of
-   * (value, count) pairs. The final combine step happens locally on the
-   * master, equivalent to running a single reduce task.
-   *
-   * TODO: This should perhaps be distributed by default.
+   * Return the count of each unique value in this RDD as a map of (value, count) pairs. The final
+   * combine step happens locally on the master, equivalent to running a single reduce task.
    */
   def countByValue(): Map[T, Long] = {
+    // TODO: This should perhaps be distributed by default.
     def countPartition(iter: Iterator[T]): Iterator[OLMap[T]] = {
       val map = new OLMap[T]
       while (iter.hasNext) {
@@ -422,7 +421,7 @@ abstract class RDD[T: ClassManifest](@transient sc: SparkContext) extends Serial
   }
 
   /**
-   * Approximate version of countByValue().
+   * (Experimental) Approximate version of countByValue().
    */
   def countByValueApprox(
       timeout: Long,
diff --git a/core/src/main/scala/spark/rdd/SequenceFileRDDFunctions.scala b/core/src/main/scala/spark/SequenceFileRDDFunctions.scala
similarity index 81%
rename from core/src/main/scala/spark/rdd/SequenceFileRDDFunctions.scala
rename to core/src/main/scala/spark/SequenceFileRDDFunctions.scala
index 24c731fa92bd98675c8d2c2fbb41a612d824ad86..a34aee69c162045f10ddc4292ca3a36b87baf88d 100644
--- a/core/src/main/scala/spark/rdd/SequenceFileRDDFunctions.scala
+++ b/core/src/main/scala/spark/SequenceFileRDDFunctions.scala
@@ -1,4 +1,4 @@
-package spark.rdd
+package spark
 
 import java.io.EOFException
 import java.net.URL
@@ -23,21 +23,21 @@ import org.apache.hadoop.io.NullWritable
 import org.apache.hadoop.io.BytesWritable
 import org.apache.hadoop.io.Text
 
-import spark.Logging
-import spark.RDD
 import spark.SparkContext._
 
 /**
  * Extra functions available on RDDs of (key, value) pairs to create a Hadoop SequenceFile,
  * through an implicit conversion. Note that this can't be part of PairRDDFunctions because
  * we need more implicit parameters to convert our keys and values to Writable.
+ *
+ * Users should import `spark.SparkContext._` at the top of their program to use these functions.
  */
 class SequenceFileRDDFunctions[K <% Writable: ClassManifest, V <% Writable : ClassManifest](
     self: RDD[(K, V)])
   extends Logging
   with Serializable {
   
-  def getWritableClass[T <% Writable: ClassManifest](): Class[_ <: Writable] = {
+  private def getWritableClass[T <% Writable: ClassManifest](): Class[_ <: Writable] = {
     val c = {
       if (classOf[Writable].isAssignableFrom(classManifest[T].erasure)) { 
         classManifest[T].erasure
@@ -49,6 +49,13 @@ class SequenceFileRDDFunctions[K <% Writable: ClassManifest, V <% Writable : Cla
     c.asInstanceOf[Class[_ <: Writable]]
   }
 
+  /**
+   * Output the RDD as a Hadoop SequenceFile using the Writable types we infer from the RDD's key
+   * and value types. If the key or value are Writable, then we use their classes directly;
+   * otherwise we map primitive types such as Int and Double to IntWritable, DoubleWritable, etc,
+   * byte arrays to BytesWritable, and Strings to Text. The `path` can be on any Hadoop-supported
+   * file system.
+   */
   def saveAsSequenceFile(path: String) {
     def anyToWritable[U <% Writable](u: U): Writable = u
 
diff --git a/core/src/main/scala/spark/SparkContext.scala b/core/src/main/scala/spark/SparkContext.scala
index 02a08778c3ff57b9dc714602a384f0a17daf5777..8739c8bb6d4d8a7dea08621f2cb79aa0a95bf5a3 100644
--- a/core/src/main/scala/spark/SparkContext.scala
+++ b/core/src/main/scala/spark/SparkContext.scala
@@ -35,12 +35,8 @@ import spark.broadcast._
 import spark.deploy.LocalSparkCluster
 import spark.partial.ApproximateEvaluator
 import spark.partial.PartialResult
-import spark.rdd.DoubleRDDFunctions
 import spark.rdd.HadoopRDD
 import spark.rdd.NewHadoopRDD
-import spark.rdd.OrderedRDDFunctions
-import spark.rdd.PairRDDFunctions
-import spark.rdd.SequenceFileRDDFunctions
 import spark.rdd.UnionRDD
 import spark.scheduler.ShuffleMapTask
 import spark.scheduler.DAGScheduler
diff --git a/core/src/main/scala/spark/api/java/JavaPairRDD.scala b/core/src/main/scala/spark/api/java/JavaPairRDD.scala
index 3c4399493c63b80800a41f2f47508111dda38496..d361de8f8f5df6a39f4039a9797ed122dc792ca6 100644
--- a/core/src/main/scala/spark/api/java/JavaPairRDD.scala
+++ b/core/src/main/scala/spark/api/java/JavaPairRDD.scala
@@ -15,7 +15,7 @@ import spark.api.java.function.{Function2 => JFunction2}
 import spark.api.java.function.{Function => JFunction}
 import spark.partial.BoundedDouble
 import spark.partial.PartialResult
-import spark.rdd.OrderedRDDFunctions
+import spark.OrderedRDDFunctions
 import spark.storage.StorageLevel
 import spark.HashPartitioner
 import spark.Partitioner
@@ -279,4 +279,4 @@ object JavaPairRDD {
     new JavaPairRDD[K, V](rdd)
 
   implicit def toRDD[K, V](rdd: JavaPairRDD[K, V]): RDD[(K, V)] = rdd.rdd
-}
\ No newline at end of file
+}
diff --git a/core/src/main/scala/spark/storage/StorageLevel.scala b/core/src/main/scala/spark/storage/StorageLevel.scala
index 2d52fac1ef0bb6c58da0decb55ae9c0624914312..c497f03e0c3e7df9fb6304e9afb7c742c0050570 100644
--- a/core/src/main/scala/spark/storage/StorageLevel.scala
+++ b/core/src/main/scala/spark/storage/StorageLevel.scala
@@ -2,6 +2,13 @@ package spark.storage
 
 import java.io.{Externalizable, ObjectInput, ObjectOutput}
 
+/**
+ * Flags for controlling the storage of an RDD. Each StorageLevel records whether to use memory,
+ * whether to drop the RDD to disk if it falls out of memory, whether to keep the data in memory
+ * in a serialized format, and whether to replicate the RDD partitions on multiple nodes.
+ * The [[spark.storage.StorageLevel$]] singleton object contains some static constants for
+ * commonly useful storage levels.
+ */
 class StorageLevel(
     var useDisk: Boolean, 
     var useMemory: Boolean,
diff --git a/core/src/main/scala/spark/util/StatCounter.scala b/core/src/main/scala/spark/util/StatCounter.scala
index 023ec09332350eab39a57d4e8650475ffc7b6481..9d7e2b804bf978a537c18d5789af79f61662f8f3 100644
--- a/core/src/main/scala/spark/util/StatCounter.scala
+++ b/core/src/main/scala/spark/util/StatCounter.scala
@@ -2,10 +2,11 @@ package spark.util
 
 /**
  * A class for tracking the statistics of a set of numbers (count, mean and variance) in a
- * numerically robust way. Includes support for merging two StatCounters. Based on Welford and
- * Chan's algorithms described at http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
+ * numerically robust way. Includes support for merging two StatCounters. Based on 
+ * [[http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance Welford and Chan's algorithms for running variance]].
+ *
+ * @constructor Initialize the StatCounter with the given values.
  */
-private[spark]
 class StatCounter(values: TraversableOnce[Double]) extends Serializable {
   private var n: Long = 0     // Running count of our values
   private var mu: Double = 0  // Running mean of our values
@@ -13,8 +14,10 @@ class StatCounter(values: TraversableOnce[Double]) extends Serializable {
 
   merge(values)
 
+  /** @constructor Initialize the StatCounter with no values. */
   def this() = this(Nil)
 
+  /** Add a value into this StatCounter, updating the internal statistics. */
   def merge(value: Double): StatCounter = {
     val delta = value - mu
     n += 1
@@ -23,11 +26,13 @@ class StatCounter(values: TraversableOnce[Double]) extends Serializable {
     this
   }
 
+  /** Add multiple values into this StatCounter, updating the internal statistics. */
   def merge(values: TraversableOnce[Double]): StatCounter = {
     values.foreach(v => merge(v))
     this
   }
 
+  /** Merge another StatCounter into this one, adding up the internal statistics. */
   def merge(other: StatCounter): StatCounter = {
     if (other == this) {
       merge(other.copy())  // Avoid overwriting fields in a weird order
@@ -46,6 +51,7 @@ class StatCounter(values: TraversableOnce[Double]) extends Serializable {
     }
   }
 
+  /** Clone this StatCounter */
   def copy(): StatCounter = {
     val other = new StatCounter
     other.n = n
@@ -60,6 +66,7 @@ class StatCounter(values: TraversableOnce[Double]) extends Serializable {
 
   def sum: Double = n * mu
 
+  /** Return the variance of the values. */
   def variance: Double = {
     if (n == 0)
       Double.NaN
@@ -67,6 +74,10 @@ class StatCounter(values: TraversableOnce[Double]) extends Serializable {
       m2 / n
   }
 
+  /**
+   * Return the sample variance, which corrects for bias in estimating the variance by dividing
+   * by N-1 instead of N.
+   */
   def sampleVariance: Double = {
     if (n <= 1)
       Double.NaN
@@ -74,8 +85,13 @@ class StatCounter(values: TraversableOnce[Double]) extends Serializable {
       m2 / (n - 1)
   }
 
+  /** Return the standard deviation of the values. */
   def stdev: Double = math.sqrt(variance)
 
+  /**
+   * Return the sample standard deviation of the values, which corrects for bias in estimating the
+   * variance by dividing by N-1 instead of N.
+   */
   def sampleStdev: Double = math.sqrt(sampleVariance)
 
   override def toString: String = {
@@ -83,8 +99,10 @@ class StatCounter(values: TraversableOnce[Double]) extends Serializable {
   }
 }
 
-private[spark] object StatCounter {
+object StatCounter {
+  /** Build a StatCounter from a list of values. */
   def apply(values: TraversableOnce[Double]) = new StatCounter(values)
 
+  /** Build a StatCounter from a list of values passed as variable-length arguments. */
   def apply(values: Double*) = new StatCounter(values)
 }