diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/StreamingLinearRegression.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/StreamingLinearRegression.scala index c5bd5b0b178d958cac78799b52b1682864e5d828..1a95048bbfe2df96d7c2998cf0bc56a398086a8e 100644 --- a/examples/src/main/scala/org/apache/spark/examples/mllib/StreamingLinearRegression.scala +++ b/examples/src/main/scala/org/apache/spark/examples/mllib/StreamingLinearRegression.scala @@ -35,8 +35,7 @@ import org.apache.spark.streaming.{Seconds, StreamingContext} * * To run on your local machine using the two directories `trainingDir` and `testDir`, * with updates every 5 seconds, and 2 features per data point, call: - * $ bin/run-example \ - * org.apache.spark.examples.mllib.StreamingLinearRegression trainingDir testDir 5 2 + * $ bin/run-example mllib.StreamingLinearRegression trainingDir testDir 5 2 * * As you add text files to `trainingDir` the model will continuously update. * Anytime you add text files to `testDir`, you'll see predictions from the current model. diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/StreamingLogisticRegression.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/StreamingLogisticRegression.scala new file mode 100644 index 0000000000000000000000000000000000000000..e1998099c2d781b32a4f048f1bf42322956a2343 --- /dev/null +++ b/examples/src/main/scala/org/apache/spark/examples/mllib/StreamingLogisticRegression.scala @@ -0,0 +1,73 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.examples.mllib + +import org.apache.spark.mllib.linalg.Vectors +import org.apache.spark.mllib.regression.LabeledPoint +import org.apache.spark.mllib.classification.StreamingLogisticRegressionWithSGD +import org.apache.spark.SparkConf +import org.apache.spark.streaming.{Seconds, StreamingContext} + +/** + * Train a logistic regression model on one stream of data and make predictions + * on another stream, where the data streams arrive as text files + * into two different directories. + * + * The rows of the text files must be labeled data points in the form + * `(y,[x1,x2,x3,...,xn])` + * Where n is the number of features, y is a binary label, and + * n must be the same for train and test. + * + * Usage: StreamingLogisticRegression <trainingDir> <testDir> <batchDuration> <numFeatures> + * + * To run on your local machine using the two directories `trainingDir` and `testDir`, + * with updates every 5 seconds, and 2 features per data point, call: + * $ bin/run-example mllib.StreamingLogisticRegression trainingDir testDir 5 2 + * + * As you add text files to `trainingDir` the model will continuously update. + * Anytime you add text files to `testDir`, you'll see predictions from the current model. + * + */ +object StreamingLogisticRegression { + + def main(args: Array[String]) { + + if (args.length != 4) { + System.err.println( + "Usage: StreamingLogisticRegression <trainingDir> <testDir> <batchDuration> <numFeatures>") + System.exit(1) + } + + val conf = new SparkConf().setMaster("local").setAppName("StreamingLogisticRegression") + val ssc = new StreamingContext(conf, Seconds(args(2).toLong)) + + val trainingData = ssc.textFileStream(args(0)).map(LabeledPoint.parse) + val testData = ssc.textFileStream(args(1)).map(LabeledPoint.parse) + + val model = new StreamingLogisticRegressionWithSGD() + .setInitialWeights(Vectors.zeros(args(3).toInt)) + + model.trainOn(trainingData) + model.predictOnValues(testData.map(lp => (lp.label, lp.features))).print() + + ssc.start() + ssc.awaitTermination() + + } + +} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala b/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala index 282fb3ff283f4ad57942df17740850bd8ba02d9a..a469315a1b5c3efa2c06ac8ddb7f1ad4a3e4fcab 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala @@ -136,7 +136,7 @@ class LogisticRegressionModel ( * for k classes multi-label classification problem. * Using [[LogisticRegressionWithLBFGS]] is recommended over this. */ -class LogisticRegressionWithSGD private ( +class LogisticRegressionWithSGD private[mllib] ( private var stepSize: Double, private var numIterations: Int, private var regParam: Double, @@ -158,7 +158,7 @@ class LogisticRegressionWithSGD private ( */ def this() = this(1.0, 100, 0.01, 1.0) - override protected def createModel(weights: Vector, intercept: Double) = { + override protected[mllib] def createModel(weights: Vector, intercept: Double) = { new LogisticRegressionModel(weights, intercept) } } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionWithSGD.scala b/mllib/src/main/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionWithSGD.scala new file mode 100644 index 0000000000000000000000000000000000000000..eabd2162e287f77d465a7a140743abb0196b27ad --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionWithSGD.scala @@ -0,0 +1,95 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.classification + +import org.apache.spark.annotation.Experimental +import org.apache.spark.mllib.linalg.Vector +import org.apache.spark.mllib.regression.StreamingLinearAlgorithm + +/** + * :: Experimental :: + * Train or predict a logistic regression model on streaming data. Training uses + * Stochastic Gradient Descent to update the model based on each new batch of + * incoming data from a DStream (see `LogisticRegressionWithSGD` for model equation) + * + * Each batch of data is assumed to be an RDD of LabeledPoints. + * The number of data points per batch can vary, but the number + * of features must be constant. An initial weight + * vector must be provided. + * + * Use a builder pattern to construct a streaming logistic regression + * analysis in an application, like: + * + * val model = new StreamingLogisticRegressionWithSGD() + * .setStepSize(0.5) + * .setNumIterations(10) + * .setInitialWeights(Vectors.dense(...)) + * .trainOn(DStream) + * + */ +@Experimental +class StreamingLogisticRegressionWithSGD private[mllib] ( + private var stepSize: Double, + private var numIterations: Int, + private var miniBatchFraction: Double, + private var regParam: Double) + extends StreamingLinearAlgorithm[LogisticRegressionModel, LogisticRegressionWithSGD] + with Serializable { + + /** + * Construct a StreamingLogisticRegression object with default parameters: + * {stepSize: 0.1, numIterations: 50, miniBatchFraction: 1.0, regParam: 0.0}. + * Initial weights must be set before using trainOn or predictOn + * (see `StreamingLinearAlgorithm`) + */ + def this() = this(0.1, 50, 1.0, 0.0) + + val algorithm = new LogisticRegressionWithSGD( + stepSize, numIterations, regParam, miniBatchFraction) + + /** Set the step size for gradient descent. Default: 0.1. */ + def setStepSize(stepSize: Double): this.type = { + this.algorithm.optimizer.setStepSize(stepSize) + this + } + + /** Set the number of iterations of gradient descent to run per update. Default: 50. */ + def setNumIterations(numIterations: Int): this.type = { + this.algorithm.optimizer.setNumIterations(numIterations) + this + } + + /** Set the fraction of each batch to use for updates. Default: 1.0. */ + def setMiniBatchFraction(miniBatchFraction: Double): this.type = { + this.algorithm.optimizer.setMiniBatchFraction(miniBatchFraction) + this + } + + /** Set the regularization parameter. Default: 0.0. */ + def setRegParam(regParam: Double): this.type = { + this.algorithm.optimizer.setRegParam(regParam) + this + } + + /** Set the initial weights. Default: [0.0, 0.0]. */ + def setInitialWeights(initialWeights: Vector): this.type = { + this.model = Option(algorithm.createModel(initialWeights, 0.0)) + this + } + +} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearAlgorithm.scala b/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearAlgorithm.scala index b549b7c475fc3272b20fc9cdf6023b471ade10cc..39a0dee931d3d69f97561fd11d62402d24d214d5 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearAlgorithm.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearAlgorithm.scala @@ -58,14 +58,14 @@ abstract class StreamingLinearAlgorithm[ A <: GeneralizedLinearAlgorithm[M]] extends Logging { /** The model to be updated and used for prediction. */ - protected var model: M + protected var model: Option[M] = null /** The algorithm to use for updating. */ protected val algorithm: A /** Return the latest model. */ def latestModel(): M = { - model + model.get } /** @@ -77,16 +77,16 @@ abstract class StreamingLinearAlgorithm[ * @param data DStream containing labeled data */ def trainOn(data: DStream[LabeledPoint]) { - if (Option(model.weights) == None) { - logError("Initial weights must be set before starting training") + if (Option(model) == None) { + logError("Model must be initialized before starting training") throw new IllegalArgumentException } data.foreachRDD { (rdd, time) => - model = algorithm.run(rdd, model.weights) + model = Option(algorithm.run(rdd, model.get.weights)) logInfo("Model updated at time %s".format(time.toString)) - val display = model.weights.size match { - case x if x > 100 => model.weights.toArray.take(100).mkString("[", ",", "...") - case _ => model.weights.toArray.mkString("[", ",", "]") + val display = model.get.weights.size match { + case x if x > 100 => model.get.weights.toArray.take(100).mkString("[", ",", "...") + case _ => model.get.weights.toArray.mkString("[", ",", "]") } logInfo("Current model: weights, %s".format (display)) } @@ -99,12 +99,12 @@ abstract class StreamingLinearAlgorithm[ * @return DStream containing predictions */ def predictOn(data: DStream[Vector]): DStream[Double] = { - if (Option(model.weights) == None) { - val msg = "Initial weights must be set before starting prediction" + if (Option(model) == None) { + val msg = "Model must be initialized before starting prediction" logError(msg) throw new IllegalArgumentException(msg) } - data.map(model.predict) + data.map(model.get.predict) } /** @@ -114,11 +114,11 @@ abstract class StreamingLinearAlgorithm[ * @return DStream containing the input keys and the predictions as values */ def predictOnValues[K: ClassTag](data: DStream[(K, Vector)]): DStream[(K, Double)] = { - if (Option(model.weights) == None) { - val msg = "Initial weights must be set before starting prediction" + if (Option(model) == None) { + val msg = "Model must be initialized before starting prediction" logError(msg) throw new IllegalArgumentException(msg) } - data.mapValues(model.predict) + data.mapValues(model.get.predict) } } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearRegressionWithSGD.scala b/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearRegressionWithSGD.scala index 1d11fde24712cf2faf98a21327a298e285721ac9..c0625b4880953f5d2b31085e5eae9d96423bd99f 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearRegressionWithSGD.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearRegressionWithSGD.scala @@ -21,6 +21,7 @@ import org.apache.spark.annotation.Experimental import org.apache.spark.mllib.linalg.Vector /** + * :: Experimental :: * Train or predict a linear regression model on streaming data. Training uses * Stochastic Gradient Descent to update the model based on each new batch of * incoming data from a DStream (see `LinearRegressionWithSGD` for model equation) @@ -41,13 +42,12 @@ import org.apache.spark.mllib.linalg.Vector * */ @Experimental -class StreamingLinearRegressionWithSGD ( +class StreamingLinearRegressionWithSGD private[mllib] ( private var stepSize: Double, private var numIterations: Int, - private var miniBatchFraction: Double, - private var initialWeights: Vector) - extends StreamingLinearAlgorithm[ - LinearRegressionModel, LinearRegressionWithSGD] with Serializable { + private var miniBatchFraction: Double) + extends StreamingLinearAlgorithm[LinearRegressionModel, LinearRegressionWithSGD] + with Serializable { /** * Construct a StreamingLinearRegression object with default parameters: @@ -55,12 +55,10 @@ class StreamingLinearRegressionWithSGD ( * Initial weights must be set before using trainOn or predictOn * (see `StreamingLinearAlgorithm`) */ - def this() = this(0.1, 50, 1.0, null) + def this() = this(0.1, 50, 1.0) val algorithm = new LinearRegressionWithSGD(stepSize, numIterations, miniBatchFraction) - var model = algorithm.createModel(initialWeights, 0.0) - /** Set the step size for gradient descent. Default: 0.1. */ def setStepSize(stepSize: Double): this.type = { this.algorithm.optimizer.setStepSize(stepSize) @@ -81,7 +79,7 @@ class StreamingLinearRegressionWithSGD ( /** Set the initial weights. Default: [0.0, 0.0]. */ def setInitialWeights(initialWeights: Vector): this.type = { - this.model = algorithm.createModel(initialWeights, 0.0) + this.model = Option(algorithm.createModel(initialWeights, 0.0)) this } diff --git a/mllib/src/test/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionSuite.scala new file mode 100644 index 0000000000000000000000000000000000000000..8b3e6e5ce92494d49b26ad01423fd511f912d299 --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionSuite.scala @@ -0,0 +1,135 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.classification + +import scala.collection.mutable.ArrayBuffer + +import org.scalatest.FunSuite + +import org.apache.spark.mllib.linalg.Vectors +import org.apache.spark.mllib.regression.LabeledPoint +import org.apache.spark.mllib.util.TestingUtils._ +import org.apache.spark.streaming.dstream.DStream +import org.apache.spark.streaming.TestSuiteBase + +class StreamingLogisticRegressionSuite extends FunSuite with TestSuiteBase { + + // use longer wait time to ensure job completion + override def maxWaitTimeMillis = 30000 + + // Test if we can accurately learn B for Y = logistic(BX) on streaming data + test("parameter accuracy") { + + val nPoints = 100 + val B = 1.5 + + // create model + val model = new StreamingLogisticRegressionWithSGD() + .setInitialWeights(Vectors.dense(0.0)) + .setStepSize(0.2) + .setNumIterations(25) + + // generate sequence of simulated data + val numBatches = 20 + val input = (0 until numBatches).map { i => + LogisticRegressionSuite.generateLogisticInput(0.0, B, nPoints, 42 * (i + 1)) + } + + // apply model training to input stream + val ssc = setupStreams(input, (inputDStream: DStream[LabeledPoint]) => { + model.trainOn(inputDStream) + inputDStream.count() + }) + runStreams(ssc, numBatches, numBatches) + + // check accuracy of final parameter estimates + assert(model.latestModel().weights(0) ~== B relTol 0.1) + + } + + // Test that parameter estimates improve when learning Y = logistic(BX) on streaming data + test("parameter convergence") { + + val B = 1.5 + val nPoints = 100 + + // create model + val model = new StreamingLogisticRegressionWithSGD() + .setInitialWeights(Vectors.dense(0.0)) + .setStepSize(0.2) + .setNumIterations(25) + + // generate sequence of simulated data + val numBatches = 20 + val input = (0 until numBatches).map { i => + LogisticRegressionSuite.generateLogisticInput(0.0, B, nPoints, 42 * (i + 1)) + } + + // create buffer to store intermediate fits + val history = new ArrayBuffer[Double](numBatches) + + // apply model training to input stream, storing the intermediate results + // (we add a count to ensure the result is a DStream) + val ssc = setupStreams(input, (inputDStream: DStream[LabeledPoint]) => { + model.trainOn(inputDStream) + inputDStream.foreachRDD(x => history.append(math.abs(model.latestModel().weights(0) - B))) + inputDStream.count() + }) + runStreams(ssc, numBatches, numBatches) + + // compute change in error + val deltas = history.drop(1).zip(history.dropRight(1)) + // check error stability (it always either shrinks, or increases with small tol) + assert(deltas.forall(x => (x._1 - x._2) <= 0.1)) + // check that error shrunk on at least 2 batches + assert(deltas.map(x => if ((x._1 - x._2) < 0) 1 else 0).sum > 1) + } + + // Test predictions on a stream + test("predictions") { + + val B = 1.5 + val nPoints = 100 + + // create model initialized with true weights + val model = new StreamingLogisticRegressionWithSGD() + .setInitialWeights(Vectors.dense(1.5)) + .setStepSize(0.2) + .setNumIterations(25) + + // generate sequence of simulated data for testing + val numBatches = 10 + val testInput = (0 until numBatches).map { i => + LogisticRegressionSuite.generateLogisticInput(0.0, B, nPoints, 42 * (i + 1)) + } + + // apply model predictions to test stream + val ssc = setupStreams(testInput, (inputDStream: DStream[LabeledPoint]) => { + model.predictOnValues(inputDStream.map(x => (x.label, x.features))) + }) + + // collect the output as (true, estimated) tuples + val output: Seq[Seq[(Double, Double)]] = runStreams(ssc, numBatches, numBatches) + + // check that at least 60% of predictions are correct on all batches + val errors = output.map(batch => batch.map(p => math.abs(p._1 - p._2)).sum / nPoints) + + assert(errors.forall(x => x <= 0.4)) + } + +}