diff --git a/docs/mllib-ensembles.md b/docs/mllib-ensembles.md index 23ede04b62d5b584cca6aed06ba2608ee76735f2..fb90b7039971c3eb09f8eb0c5dac36a7b82a1df9 100644 --- a/docs/mllib-ensembles.md +++ b/docs/mllib-ensembles.md @@ -458,7 +458,7 @@ val (trainingData, testData) = (splits(0), splits(1)) // The defaultParams for Classification use LogLoss by default. val boostingStrategy = BoostingStrategy.defaultParams("Classification") boostingStrategy.numIterations = 3 // Note: Use more iterations in practice. -boostingStrategy.treeStrategy.numClassesForClassification = 2 +boostingStrategy.treeStrategy.numClasses = 2 boostingStrategy.treeStrategy.maxDepth = 5 // Empty categoricalFeaturesInfo indicates all features are continuous. boostingStrategy.treeStrategy.categoricalFeaturesInfo = Map[Int, Int]()