From e5cde7ab11a43334fa01b1bb8904da5c0774bc62 Mon Sep 17 00:00:00 2001
From: Yin Huai <yhuai@databricks.com>
Date: Wed, 6 Jan 2016 22:03:31 -0800
Subject: [PATCH] Revert "[SPARK-12006][ML][PYTHON] Fix GMM failure if
 initialModel is not None"

This reverts commit fcd013cf70e7890aa25a8fe3cb6c8b36bf0e1f04.

Author: Yin Huai <yhuai@databricks.com>

Closes #10632 from yhuai/pythonStyle.
---
 python/pyspark/mllib/clustering.py |  2 +-
 python/pyspark/mllib/tests.py      | 12 ------------
 2 files changed, 1 insertion(+), 13 deletions(-)

diff --git a/python/pyspark/mllib/clustering.py b/python/pyspark/mllib/clustering.py
index 48daa87e82..c9e6f1dec6 100644
--- a/python/pyspark/mllib/clustering.py
+++ b/python/pyspark/mllib/clustering.py
@@ -346,7 +346,7 @@ class GaussianMixture(object):
             if initialModel.k != k:
                 raise Exception("Mismatched cluster count, initialModel.k = %s, however k = %s"
                                 % (initialModel.k, k))
-            initialModelWeights = list(initialModel.weights)
+            initialModelWeights = initialModel.weights
             initialModelMu = [initialModel.gaussians[i].mu for i in range(initialModel.k)]
             initialModelSigma = [initialModel.gaussians[i].sigma for i in range(initialModel.k)]
         java_model = callMLlibFunc("trainGaussianMixtureModel", rdd.map(_convert_to_vector),
diff --git a/python/pyspark/mllib/tests.py b/python/pyspark/mllib/tests.py
index 97fed7662e..6ed03e3582 100644
--- a/python/pyspark/mllib/tests.py
+++ b/python/pyspark/mllib/tests.py
@@ -475,18 +475,6 @@ class ListTests(MLlibTestCase):
         for c1, c2 in zip(clusters1.weights, clusters2.weights):
             self.assertEqual(round(c1, 7), round(c2, 7))
 
-    def test_gmm_with_initial_model(self):
-        from pyspark.mllib.clustering import GaussianMixture
-        data = self.sc.parallelize([
-            (-10, -5), (-9, -4), (10, 5), (9, 4)
-        ])
-
-        gmm1 = GaussianMixture.train(data, 2, convergenceTol=0.001,
-                                     maxIterations=10, seed=63)
-        gmm2 = GaussianMixture.train(data, 2, convergenceTol=0.001,
-                                     maxIterations=10, seed=63, initialModel=gmm1)
-        self.assertAlmostEqual((gmm1.weights - gmm2.weights).sum(), 0.0)      
-
     def test_classification(self):
         from pyspark.mllib.classification import LogisticRegressionWithSGD, SVMWithSGD, NaiveBayes
         from pyspark.mllib.tree import DecisionTree, DecisionTreeModel, RandomForest,\
-- 
GitLab