diff --git a/docs/mllib-pmml-model-export.md b/docs/mllib-pmml-model-export.md
index b532ad907dfc5edecd5d0bdf220bd2182e1c1730..58ed5a0e9d70240698f170fb42ff6e292c091c0e 100644
--- a/docs/mllib-pmml-model-export.md
+++ b/docs/mllib-pmml-model-export.md
@@ -45,41 +45,12 @@ The table below outlines the `spark.mllib` models that can be exported to PMML a
 <div data-lang="scala" markdown="1">
 To export a supported `model` (see table above) to PMML, simply call `model.toPMML`.
 
+As well as exporting the PMML model to a String (`model.toPMML` as in the example above), you can export the PMML model to other formats.
+
 Refer to the [`KMeans` Scala docs](api/scala/index.html#org.apache.spark.mllib.clustering.KMeans) and [`Vectors` Scala docs](api/scala/index.html#org.apache.spark.mllib.linalg.Vectors) for details on the API.
 
 Here a complete example of building a KMeansModel and print it out in PMML format:
-{% highlight scala %}
-import org.apache.spark.mllib.clustering.KMeans
-import org.apache.spark.mllib.linalg.Vectors
-
-// Load and parse the data
-val data = sc.textFile("data/mllib/kmeans_data.txt")
-val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble))).cache()
-
-// Cluster the data into two classes using KMeans
-val numClusters = 2
-val numIterations = 20
-val clusters = KMeans.train(parsedData, numClusters, numIterations)
-
-// Export to PMML
-println("PMML Model:\n" + clusters.toPMML)
-{% endhighlight %}
-
-As well as exporting the PMML model to a String (`model.toPMML` as in the example above), you can export the PMML model to other formats:
-
-{% highlight scala %}
-// Export the model to a String in PMML format
-clusters.toPMML
-
-// Export the model to a local file in PMML format
-clusters.toPMML("/tmp/kmeans.xml")
-
-// Export the model to a directory on a distributed file system in PMML format
-clusters.toPMML(sc,"/tmp/kmeans")
-
-// Export the model to the OutputStream in PMML format
-clusters.toPMML(System.out)
-{% endhighlight %}
+{% include_example scala/org/apache/spark/examples/mllib/PMMLModelExportExample.scala %}
 
 For unsupported models, either you will not find a `.toPMML` method or an `IllegalArgumentException` will be thrown.
 
diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/PMMLModelExportExample.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/PMMLModelExportExample.scala
new file mode 100644
index 0000000000000000000000000000000000000000..d74d74a37fb112005a50e1cba94ab40f0169bb6c
--- /dev/null
+++ b/examples/src/main/scala/org/apache/spark/examples/mllib/PMMLModelExportExample.scala
@@ -0,0 +1,59 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// scalastyle:off println
+package org.apache.spark.examples.mllib
+
+import org.apache.spark.{SparkConf, SparkContext}
+// $example on$
+import org.apache.spark.mllib.clustering.KMeans
+import org.apache.spark.mllib.linalg.Vectors
+// $example off$
+
+object PMMLModelExportExample {
+
+  def main(args: Array[String]): Unit = {
+    val conf = new SparkConf().setAppName("PMMLModelExportExample")
+    val sc = new SparkContext(conf)
+
+    // $example on$
+    // Load and parse the data
+    val data = sc.textFile("data/mllib/kmeans_data.txt")
+    val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble))).cache()
+
+    // Cluster the data into two classes using KMeans
+    val numClusters = 2
+    val numIterations = 20
+    val clusters = KMeans.train(parsedData, numClusters, numIterations)
+
+    // Export to PMML to a String in PMML format
+    println("PMML Model:\n" + clusters.toPMML)
+
+    // Export the model to a local file in PMML format
+    clusters.toPMML("/tmp/kmeans.xml")
+
+    // Export the model to a directory on a distributed file system in PMML format
+    clusters.toPMML(sc, "/tmp/kmeans")
+
+    // Export the model to the OutputStream in PMML format
+    clusters.toPMML(System.out)
+    // $example off$
+
+    sc.stop()
+  }
+}
+// scalastyle:on println