diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/VectorAssembler.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/VectorAssembler.scala
index b5a69cee6daf3366e32126727d118769650e6410..796758a70ef1895e6c3bf063b963c80195523972 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/feature/VectorAssembler.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/feature/VectorAssembler.scala
@@ -102,6 +102,6 @@ object VectorAssembler {
       case o =>
         throw new SparkException(s"$o of type ${o.getClass.getName} is not supported.")
     }
-    Vectors.sparse(cur, indices.result(), values.result())
+    Vectors.sparse(cur, indices.result(), values.result()).compressed
   }
 }
diff --git a/mllib/src/test/scala/org/apache/spark/ml/feature/VectorAssemblerSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/feature/VectorAssemblerSuite.scala
index 57d0278e036391efeb7a7d6a7f5d3c1f25c2e9a5..0db27607bc274cc4fb9b5d5fd77ccb00bf201d03 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/feature/VectorAssemblerSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/feature/VectorAssemblerSuite.scala
@@ -20,7 +20,7 @@ package org.apache.spark.ml.feature
 import org.scalatest.FunSuite
 
 import org.apache.spark.SparkException
-import org.apache.spark.mllib.linalg.{Vector, Vectors}
+import org.apache.spark.mllib.linalg.{DenseVector, SparseVector, Vector, Vectors}
 import org.apache.spark.mllib.util.MLlibTestSparkContext
 import org.apache.spark.sql.{Row, SQLContext}
 
@@ -48,6 +48,14 @@ class VectorAssemblerSuite extends FunSuite with MLlibTestSparkContext {
     }
   }
 
+  test("assemble should compress vectors") {
+    import org.apache.spark.ml.feature.VectorAssembler.assemble
+    val v1 = assemble(0.0, 0.0, 0.0, Vectors.dense(4.0))
+    assert(v1.isInstanceOf[SparseVector])
+    val v2 = assemble(1.0, 2.0, 3.0, Vectors.sparse(1, Array(0), Array(4.0)))
+    assert(v2.isInstanceOf[DenseVector])
+  }
+
   test("VectorAssembler") {
     val df = sqlContext.createDataFrame(Seq(
       (0, 0.0, Vectors.dense(1.0, 2.0), "a", Vectors.sparse(2, Array(1), Array(3.0)), 10L)
diff --git a/python/pyspark/ml/feature.py b/python/pyspark/ml/feature.py
index 8a0fdddd2d9b51cb1bbb99de1881ac5b5b545ccb..705a368192c24ea6753162986861440e2637c31b 100644
--- a/python/pyspark/ml/feature.py
+++ b/python/pyspark/ml/feature.py
@@ -121,12 +121,12 @@ class VectorAssembler(JavaTransformer, HasInputCols, HasOutputCol):
     >>> df = sc.parallelize([Row(a=1, b=0, c=3)]).toDF()
     >>> vecAssembler = VectorAssembler(inputCols=["a", "b", "c"], outputCol="features")
     >>> vecAssembler.transform(df).head().features
-    SparseVector(3, {0: 1.0, 2: 3.0})
+    DenseVector([1.0, 0.0, 3.0])
     >>> vecAssembler.setParams(outputCol="freqs").transform(df).head().freqs
-    SparseVector(3, {0: 1.0, 2: 3.0})
+    DenseVector([1.0, 0.0, 3.0])
     >>> params = {vecAssembler.inputCols: ["b", "a"], vecAssembler.outputCol: "vector"}
     >>> vecAssembler.transform(df, params).head().vector
-    SparseVector(2, {1: 1.0})
+    DenseVector([0.0, 1.0])
     """
 
     _java_class = "org.apache.spark.ml.feature.VectorAssembler"