diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/basicOperators.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/basicOperators.scala
index 4abda21ffec96889325a1432c44646878b3f22a5..47bff0c730b8a2bf197d0870c3df1b3a9a79e49a 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/execution/basicOperators.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/basicOperators.scala
@@ -20,10 +20,10 @@ package org.apache.spark.sql.execution
 import scala.collection.mutable.ArrayBuffer
 import scala.reflect.runtime.universe.TypeTag
 
+import org.apache.spark.{SparkEnv, HashPartitioner, SparkConf}
 import org.apache.spark.annotation.DeveloperApi
-import org.apache.spark.{HashPartitioner, SparkConf}
 import org.apache.spark.rdd.{RDD, ShuffledRDD}
-import org.apache.spark.sql.SQLContext
+import org.apache.spark.shuffle.sort.SortShuffleManager
 import org.apache.spark.sql.catalyst.ScalaReflection
 import org.apache.spark.sql.catalyst.errors._
 import org.apache.spark.sql.catalyst.expressions._
@@ -96,6 +96,9 @@ case class Limit(limit: Int, child: SparkPlan)
   // TODO: Implement a partition local limit, and use a strategy to generate the proper limit plan:
   // partition local limit -> exchange into one partition -> partition local limit again
 
+  /** We must copy rows when sort based shuffle is on */
+  private def sortBasedShuffleOn = SparkEnv.get.shuffleManager.isInstanceOf[SortShuffleManager]
+
   override def output = child.output
 
   /**
@@ -143,9 +146,15 @@ case class Limit(limit: Int, child: SparkPlan)
   }
 
   override def execute() = {
-    val rdd = child.execute().mapPartitions { iter =>
-      val mutablePair = new MutablePair[Boolean, Row]()
-      iter.take(limit).map(row => mutablePair.update(false, row))
+    val rdd: RDD[_ <: Product2[Boolean, Row]] = if (sortBasedShuffleOn) {
+      child.execute().mapPartitions { iter =>
+        iter.take(limit).map(row => (false, row.copy()))
+      }
+    } else {
+      child.execute().mapPartitions { iter =>
+        val mutablePair = new MutablePair[Boolean, Row]()
+        iter.take(limit).map(row => mutablePair.update(false, row))
+      }
     }
     val part = new HashPartitioner(1)
     val shuffled = new ShuffledRDD[Boolean, Row, Row](rdd, part)