From d864c55cf8c92466336e796d0c98d83230e330af Mon Sep 17 00:00:00 2001 From: Reynold Xin <rxin@databricks.com> Date: Wed, 4 May 2016 10:38:27 -0700 Subject: [PATCH] [SPARK-15109][SQL] Accept Dataset[_] in joins ## What changes were proposed in this pull request? This patch changes the join API in Dataset so they can accept any Dataset, rather than just DataFrames. ## How was this patch tested? N/A. Author: Reynold Xin <rxin@databricks.com> Closes #12886 from rxin/SPARK-15109. --- .../main/scala/org/apache/spark/sql/Dataset.scala | 12 ++++++------ .../main/scala/org/apache/spark/sql/functions.scala | 4 ++-- 2 files changed, 8 insertions(+), 8 deletions(-) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala b/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala index 31dd64e909..c77b13832c 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala @@ -564,7 +564,7 @@ class Dataset[T] private[sql]( * @group untypedrel * @since 2.0.0 */ - def join(right: DataFrame): DataFrame = withPlan { + def join(right: Dataset[_]): DataFrame = withPlan { Join(logicalPlan, right.logicalPlan, joinType = Inner, None) } @@ -589,7 +589,7 @@ class Dataset[T] private[sql]( * @group untypedrel * @since 2.0.0 */ - def join(right: DataFrame, usingColumn: String): DataFrame = { + def join(right: Dataset[_], usingColumn: String): DataFrame = { join(right, Seq(usingColumn)) } @@ -614,7 +614,7 @@ class Dataset[T] private[sql]( * @group untypedrel * @since 2.0.0 */ - def join(right: DataFrame, usingColumns: Seq[String]): DataFrame = { + def join(right: Dataset[_], usingColumns: Seq[String]): DataFrame = { join(right, usingColumns, "inner") } @@ -635,7 +635,7 @@ class Dataset[T] private[sql]( * @group untypedrel * @since 2.0.0 */ - def join(right: DataFrame, usingColumns: Seq[String], joinType: String): DataFrame = { + def join(right: Dataset[_], usingColumns: Seq[String], joinType: String): DataFrame = { // Analyze the self join. The assumption is that the analyzer will disambiguate left vs right // by creating a new instance for one of the branch. val joined = sparkSession.executePlan( @@ -663,7 +663,7 @@ class Dataset[T] private[sql]( * @group untypedrel * @since 2.0.0 */ - def join(right: DataFrame, joinExprs: Column): DataFrame = join(right, joinExprs, "inner") + def join(right: Dataset[_], joinExprs: Column): DataFrame = join(right, joinExprs, "inner") /** * Join with another [[DataFrame]], using the given join expression. The following performs @@ -686,7 +686,7 @@ class Dataset[T] private[sql]( * @group untypedrel * @since 2.0.0 */ - def join(right: DataFrame, joinExprs: Column, joinType: String): DataFrame = { + def join(right: Dataset[_], joinExprs: Column, joinType: String): DataFrame = { // Note that in this function, we introduce a hack in the case of self-join to automatically // resolve ambiguous join conditions into ones that might make sense [SPARK-6231]. // Consider this case: df.join(df, df("key") === df("key")) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/functions.scala b/sql/core/src/main/scala/org/apache/spark/sql/functions.scala index fe63c80815..3e295c20b6 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/functions.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/functions.scala @@ -931,8 +931,8 @@ object functions { * @group normal_funcs * @since 1.5.0 */ - def broadcast(df: DataFrame): DataFrame = { - Dataset.ofRows(df.sparkSession, BroadcastHint(df.logicalPlan)) + def broadcast[T](df: Dataset[T]): Dataset[T] = { + Dataset[T](df.sparkSession, BroadcastHint(df.logicalPlan))(df.unresolvedTEncoder) } /** -- GitLab