diff --git a/docs/sql-programming-guide.md b/docs/sql-programming-guide.md index 03500867df70f0c4025107abf838d86718f5d9b1..d49233714a0bbd9ea94f28eef5d8248e0cf0906a 100644 --- a/docs/sql-programming-guide.md +++ b/docs/sql-programming-guide.md @@ -193,8 +193,8 @@ df.groupBy("age").count().show() <div data-lang="java" markdown="1"> {% highlight java %} -val sc: JavaSparkContext // An existing SparkContext. -val sqlContext = new org.apache.spark.sql.SQLContext(sc) +JavaSparkContext sc // An existing SparkContext. +SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc) // Create the DataFrame DataFrame df = sqlContext.jsonFile("examples/src/main/resources/people.json"); @@ -308,8 +308,8 @@ val df = sqlContext.sql("SELECT * FROM table") <div data-lang="java" markdown="1"> {% highlight java %} -val sqlContext = ... // An existing SQLContext -val df = sqlContext.sql("SELECT * FROM table") +SQLContext sqlContext = ... // An existing SQLContext +DataFrame df = sqlContext.sql("SELECT * FROM table") {% endhighlight %} </div> @@ -435,7 +435,7 @@ DataFrame teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AN // The results of SQL queries are DataFrames and support all the normal RDD operations. // The columns of a row in the result can be accessed by ordinal. -List<String> teenagerNames = teenagers.map(new Function<Row, String>() { +List<String> teenagerNames = teenagers.javaRDD().map(new Function<Row, String>() { public String call(Row row) { return "Name: " + row.getString(0); } @@ -599,7 +599,7 @@ DataFrame results = sqlContext.sql("SELECT name FROM people"); // The results of SQL queries are DataFrames and support all the normal RDD operations. // The columns of a row in the result can be accessed by ordinal. -List<String> names = results.map(new Function<Row, String>() { +List<String> names = results.javaRDD().map(new Function<Row, String>() { public String call(Row row) { return "Name: " + row.getString(0); } @@ -860,7 +860,7 @@ DataFrame parquetFile = sqlContext.parquetFile("people.parquet"); //Parquet files can also be registered as tables and then used in SQL statements. parquetFile.registerTempTable("parquetFile"); DataFrame teenagers = sqlContext.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19"); -List<String> teenagerNames = teenagers.map(new Function<Row, String>() { +List<String> teenagerNames = teenagers.javaRDD().map(new Function<Row, String>() { public String call(Row row) { return "Name: " + row.getString(0); }