diff --git a/docs/running-on-mesos.md b/docs/running-on-mesos.md index 3193e178534838106b152d80ef436a00bee812f8..ed720f1039f94952af33915e75ee6111b6564d92 100644 --- a/docs/running-on-mesos.md +++ b/docs/running-on-mesos.md @@ -202,7 +202,7 @@ where each application gets more or fewer machines as it ramps up and down, but additional overhead in launching each task. This mode may be inappropriate for low-latency requirements like interactive queries or serving web requests. -To run in coarse-grained mode, set the `spark.mesos.coarse` property to false in your +To run in fine-grained mode, set the `spark.mesos.coarse` property to false in your [SparkConf](configuration.html#spark-properties): {% highlight scala %} @@ -266,13 +266,11 @@ See the [configuration page](configuration.html) for information on Spark config <tr><th>Property Name</th><th>Default</th><th>Meaning</th></tr> <tr> <td><code>spark.mesos.coarse</code></td> - <td>false</td> + <td>true</td> <td> - If set to <code>true</code>, runs over Mesos clusters in - <a href="running-on-mesos.html#mesos-run-modes">"coarse-grained" sharing mode</a>, - where Spark acquires one long-lived Mesos task on each machine instead of one Mesos task per - Spark task. This gives lower-latency scheduling for short queries, but leaves resources in use - for the whole duration of the Spark job. + If set to <code>true</code>, runs over Mesos clusters in "coarse-grained" sharing mode, where Spark acquires one long-lived Mesos task on each machine. + If set to <code>false</code>, runs over Mesos cluster in "fine-grained" sharing mode, where one Mesos task is created per Spark task. + Detailed information in <a href="running-on-mesos.html#mesos-run-modes">'Mesos Run Modes'</a>. </td> </tr> <tr>