diff --git a/examples/src/main/java/spark/examples/JavaKMeans.java b/examples/src/main/java/spark/examples/JavaKMeans.java new file mode 100644 index 0000000000000000000000000000000000000000..626034eb0d4d3a59f49a45e0a71d90896a095da1 --- /dev/null +++ b/examples/src/main/java/spark/examples/JavaKMeans.java @@ -0,0 +1,114 @@ +package spark.examples; + +import scala.Tuple2; +import spark.api.java.JavaPairRDD; +import spark.api.java.JavaRDD; +import spark.api.java.JavaSparkContext; +import spark.api.java.function.Function; +import spark.api.java.function.PairFunction; +import spark.util.Vector; + +import java.util.List; +import java.util.Map; + +/** + * K-means clustering using Java API. + */ +public class JavaKMeans { + + /** Parses numbers split by whitespace to a vector */ + static Vector parseVector(String line) { + String[] splits = line.split(" "); + double[] data = new double[splits.length]; + int i = 0; + for (String s : splits) + data[i] = Double.parseDouble(splits[i++]); + return new Vector(data); + } + + /** Computes the vector to which the input vector is closest using squared distance */ + static int closestPoint(Vector p, List<Vector> centers) { + int bestIndex = 0; + double closest = Double.POSITIVE_INFINITY; + for (int i = 0; i < centers.size(); i++) { + double tempDist = p.squaredDist(centers.get(i)); + if (tempDist < closest) { + closest = tempDist; + bestIndex = i; + } + } + return bestIndex; + } + + /** Computes the mean across all vectors in the input set of vectors */ + static Vector average(List<Vector> ps) { + int numVectors = ps.size(); + Vector out = new Vector(ps.get(0).elements()); + // start from i = 1 since we already copied index 0 above + for (int i = 1; i < numVectors; i++) { + out.addInPlace(ps.get(i)); + } + return out.divide(numVectors); + } + + public static void main(String[] args) throws Exception { + if (args.length < 4) { + System.err.println("Usage: JavaKMeans <master> <file> <k> <convergeDist>"); + System.exit(1); + } + JavaSparkContext sc = new JavaSparkContext(args[0], "JavaKMeans", + System.getenv("SPARK_HOME"), System.getenv("SPARK_EXAMPLES_JAR")); + String path = args[1]; + int K = Integer.parseInt(args[2]); + double convergeDist = Double.parseDouble(args[3]); + + JavaRDD<Vector> data = sc.textFile(path).map( + new Function<String, Vector>() { + @Override + public Vector call(String line) throws Exception { + return parseVector(line); + } + } + ).cache(); + + final List<Vector> centroids = data.takeSample(false, K, 42); + + double tempDist; + do { + // allocate each vector to closest centroid + JavaPairRDD<Integer, Vector> closest = data.map( + new PairFunction<Vector, Integer, Vector>() { + @Override + public Tuple2<Integer, Vector> call(Vector vector) throws Exception { + return new Tuple2<Integer, Vector>( + closestPoint(vector, centroids), vector); + } + } + ); + + // group by cluster id and average the vectors within each cluster to compute centroids + JavaPairRDD<Integer, List<Vector>> pointsGroup = closest.groupByKey(); + Map<Integer, Vector> newCentroids = pointsGroup.mapValues( + new Function<List<Vector>, Vector>() { + public Vector call(List<Vector> ps) throws Exception { + return average(ps); + } + }).collectAsMap(); + tempDist = 0.0; + for (int i = 0; i < K; i++) { + tempDist += centroids.get(i).squaredDist(newCentroids.get(i)); + } + for (Map.Entry<Integer, Vector> t: newCentroids.entrySet()) { + centroids.set(t.getKey(), t.getValue()); + } + System.out.println("Finished iteration (delta = " + tempDist + ")"); + } while (tempDist > convergeDist); + + System.out.println("Final centers:"); + for (Vector c : centroids) + System.out.println(c); + + System.exit(0); + + } +} diff --git a/examples/src/main/java/spark/examples/JavaLogQuery.java b/examples/src/main/java/spark/examples/JavaLogQuery.java new file mode 100644 index 0000000000000000000000000000000000000000..6b22e7120c9174ccc602482aac062383d748ebe2 --- /dev/null +++ b/examples/src/main/java/spark/examples/JavaLogQuery.java @@ -0,0 +1,114 @@ +package spark.examples; + +import com.google.common.collect.Lists; +import scala.Tuple2; +import scala.Tuple3; +import spark.api.java.JavaPairRDD; +import spark.api.java.JavaRDD; +import spark.api.java.JavaSparkContext; +import spark.api.java.function.Function2; +import spark.api.java.function.PairFunction; + +import java.io.Serializable; +import java.util.Collections; +import java.util.List; +import java.util.regex.Matcher; +import java.util.regex.Pattern; + +/** + * Executes a roll up-style query against Apache logs. + */ +public class JavaLogQuery { + + public static List<String> exampleApacheLogs = Lists.newArrayList( + "10.10.10.10 - \"FRED\" [18/Jan/2013:17:56:07 +1100] \"GET http://images.com/2013/Generic.jpg " + + "HTTP/1.1\" 304 315 \"http://referall.com/\" \"Mozilla/4.0 (compatible; MSIE 7.0; " + + "Windows NT 5.1; GTB7.4; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30; .NET CLR 3.0.04506.648; " + + ".NET CLR 3.5.21022; .NET CLR 3.0.4506.2152; .NET CLR 1.0.3705; .NET CLR 1.1.4322; .NET CLR " + + "3.5.30729; Release=ARP)\" \"UD-1\" - \"image/jpeg\" \"whatever\" 0.350 \"-\" - \"\" 265 923 934 \"\" " + + "62.24.11.25 images.com 1358492167 - Whatup", + "10.10.10.10 - \"FRED\" [18/Jan/2013:18:02:37 +1100] \"GET http://images.com/2013/Generic.jpg " + + "HTTP/1.1\" 304 306 \"http:/referall.com\" \"Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; " + + "GTB7.4; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30; .NET CLR 3.0.04506.648; .NET CLR " + + "3.5.21022; .NET CLR 3.0.4506.2152; .NET CLR 1.0.3705; .NET CLR 1.1.4322; .NET CLR " + + "3.5.30729; Release=ARP)\" \"UD-1\" - \"image/jpeg\" \"whatever\" 0.352 \"-\" - \"\" 256 977 988 \"\" " + + "0 73.23.2.15 images.com 1358492557 - Whatup"); + + public static Pattern apacheLogRegex = Pattern.compile( + "^([\\d.]+) (\\S+) (\\S+) \\[([\\w\\d:/]+\\s[+\\-]\\d{4})\\] \"(.+?)\" (\\d{3}) ([\\d\\-]+) \"([^\"]+)\" \"([^\"]+)\".*"); + + /** Tracks the total query count and number of aggregate bytes for a particular group. */ + public static class Stats implements Serializable { + + private int count; + private int numBytes; + + public Stats(int count, int numBytes) { + this.count = count; + this.numBytes = numBytes; + } + public Stats merge(Stats other) { + return new Stats(count + other.count, numBytes + other.numBytes); + } + + public String toString() { + return String.format("bytes=%s\tn=%s", numBytes, count); + } + } + + public static Tuple3<String, String, String> extractKey(String line) { + Matcher m = apacheLogRegex.matcher(line); + List<String> key = Collections.emptyList(); + if (m.find()) { + String ip = m.group(1); + String user = m.group(3); + String query = m.group(5); + if (!user.equalsIgnoreCase("-")) { + return new Tuple3<String, String, String>(ip, user, query); + } + } + return new Tuple3<String, String, String>(null, null, null); + } + + public static Stats extractStats(String line) { + Matcher m = apacheLogRegex.matcher(line); + if (m.find()) { + int bytes = Integer.parseInt(m.group(7)); + return new Stats(1, bytes); + } + else + return new Stats(1, 0); + } + + public static void main(String[] args) throws Exception { + if (args.length == 0) { + System.err.println("Usage: JavaLogQuery <master> [logFile]"); + System.exit(1); + } + + JavaSparkContext jsc = new JavaSparkContext(args[0], "JavaLogQuery", + System.getenv("SPARK_HOME"), System.getenv("SPARK_EXAMPLES_JAR")); + + JavaRDD<String> dataSet = (args.length == 2) ? jsc.textFile(args[1]) : jsc.parallelize(exampleApacheLogs); + + JavaPairRDD<Tuple3<String, String, String>, Stats> extracted = dataSet.map(new PairFunction<String, Tuple3<String, String, String>, Stats>() { + @Override + public Tuple2<Tuple3<String, String, String>, Stats> call(String s) throws Exception { + return new Tuple2<Tuple3<String, String, String>, Stats>(extractKey(s), extractStats(s)); + } + }); + + JavaPairRDD<Tuple3<String, String, String>, Stats> counts = extracted.reduceByKey(new Function2<Stats, Stats, Stats>() { + @Override + public Stats call(Stats stats, Stats stats2) throws Exception { + return stats.merge(stats2); + } + }); + + List<Tuple2<Tuple3<String, String, String>, Stats>> output = counts.collect(); + for (Tuple2 t : output) { + System.out.println(t._1 + "\t" + t._2); + } + System.exit(0); + } +} diff --git a/examples/src/main/java/spark/examples/JavaSparkPi.java b/examples/src/main/java/spark/examples/JavaSparkPi.java new file mode 100644 index 0000000000000000000000000000000000000000..a15a967de85dfc505877f5a9d79ec30a481a505e --- /dev/null +++ b/examples/src/main/java/spark/examples/JavaSparkPi.java @@ -0,0 +1,48 @@ +package spark.examples; + +import spark.api.java.JavaRDD; +import spark.api.java.JavaSparkContext; +import spark.api.java.function.Function; +import spark.api.java.function.Function2; + +import java.util.ArrayList; +import java.util.List; + +/** Computes an approximation to pi */ +public class JavaSparkPi { + + + public static void main(String[] args) throws Exception { + if (args.length == 0) { + System.err.println("Usage: JavaLogQuery <master> [slices]"); + System.exit(1); + } + + JavaSparkContext jsc = new JavaSparkContext(args[0], "JavaLogQuery", + System.getenv("SPARK_HOME"), System.getenv("SPARK_EXAMPLES_JAR")); + + int slices = (args.length == 2) ? Integer.parseInt(args[1]) : 2; + int n = 100000 * slices; + List<Integer> l = new ArrayList<Integer>(n); + for (int i = 0; i < n; i++) + l.add(i); + + JavaRDD<Integer> dataSet = jsc.parallelize(l, slices); + + int count = dataSet.map(new Function<Integer, Integer>() { + @Override + public Integer call(Integer integer) throws Exception { + double x = Math.random() * 2 - 1; + double y = Math.random() * 2 - 1; + return (x * x + y * y < 1) ? 1 : 0; + } + }).reduce(new Function2<Integer, Integer, Integer>() { + @Override + public Integer call(Integer integer, Integer integer2) throws Exception { + return integer + integer2; + } + }); + + System.out.println("Pi is roughly " + 4.0 * count / n); + } +} diff --git a/examples/src/main/scala/spark/examples/SparkKMeans.scala b/examples/src/main/scala/spark/examples/SparkKMeans.scala index 7c21ea12fb72430089d0a4166c8b74fac7677277..4161c59fead2046851428f799f1ecbc07b1eedf8 100644 --- a/examples/src/main/scala/spark/examples/SparkKMeans.scala +++ b/examples/src/main/scala/spark/examples/SparkKMeans.scala @@ -64,6 +64,7 @@ object SparkKMeans { for (newP <- newPoints) { kPoints(newP._1) = newP._2 } + println("Finished iteration (delta = " + tempDist + ")") } println("Final centers:") diff --git a/examples/src/main/scala/spark/examples/SparkPi.scala b/examples/src/main/scala/spark/examples/SparkPi.scala index 5a31d74444f1c637b835c907c2337d09724f59e3..f598d2ff9c7cdf0565594eb36965fbdea5b27b25 100644 --- a/examples/src/main/scala/spark/examples/SparkPi.scala +++ b/examples/src/main/scala/spark/examples/SparkPi.scala @@ -4,6 +4,7 @@ import scala.math.random import spark._ import SparkContext._ +/** Computes an approximation to pi */ object SparkPi { def main(args: Array[String]) { if (args.length == 0) {