From c64a8ff39794d60c596c0d34130019c09c9c8012 Mon Sep 17 00:00:00 2001 From: Zheng RuiFeng <ruifengz@foxmail.com> Date: Mon, 24 Oct 2016 10:25:24 +0100 Subject: [PATCH] [SPARK-18049][MLLIB][TEST] Add missing tests for truePositiveRate and weightedTruePositiveRate ## What changes were proposed in this pull request? Add missing tests for `truePositiveRate` and `weightedTruePositiveRate` in `MulticlassMetricsSuite` ## How was this patch tested? added testing Author: Zheng RuiFeng <ruifengz@foxmail.com> Closes #15585 from zhengruifeng/mc_missing_test. --- .../api/python/WriteInputFormatTestDataGenerator.scala | 2 +- .../main/scala/org/apache/spark/ml/util/ReadWrite.scala | 2 +- .../apache/spark/mllib/evaluation/RegressionMetrics.scala | 2 +- .../spark/mllib/linalg/distributed/BlockMatrix.scala | 4 ++-- .../spark/mllib/evaluation/MulticlassMetricsSuite.scala | 8 ++++++++ .../spark/mllib/evaluation/MultilabelMetricsSuite.scala | 2 +- 6 files changed, 14 insertions(+), 6 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/api/python/WriteInputFormatTestDataGenerator.scala b/core/src/main/scala/org/apache/spark/api/python/WriteInputFormatTestDataGenerator.scala index 34cb7c61d7..86965dbc2e 100644 --- a/core/src/main/scala/org/apache/spark/api/python/WriteInputFormatTestDataGenerator.scala +++ b/core/src/main/scala/org/apache/spark/api/python/WriteInputFormatTestDataGenerator.scala @@ -144,7 +144,7 @@ object WriteInputFormatTestDataGenerator { // Create test data for ArrayWritable val data = Seq( - (1, Array()), + (1, Array.empty[Double]), (2, Array(3.0, 4.0, 5.0)), (3, Array(4.0, 5.0, 6.0)) ) diff --git a/mllib/src/main/scala/org/apache/spark/ml/util/ReadWrite.scala b/mllib/src/main/scala/org/apache/spark/ml/util/ReadWrite.scala index 4413fefdea..bc4f9e6716 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/util/ReadWrite.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/util/ReadWrite.scala @@ -474,7 +474,7 @@ private[ml] object MetaAlgorithmReadWrite { case ovr: OneVsRest => Array(ovr.getClassifier) case ovrModel: OneVsRestModel => Array(ovrModel.getClassifier) ++ ovrModel.models case rformModel: RFormulaModel => Array(rformModel.pipelineModel) - case _: Params => Array() + case _: Params => Array.empty[Params] } val subStageMaps = subStages.flatMap(getUidMapImpl) List((instance.uid, instance)) ++ subStageMaps diff --git a/mllib/src/main/scala/org/apache/spark/mllib/evaluation/RegressionMetrics.scala b/mllib/src/main/scala/org/apache/spark/mllib/evaluation/RegressionMetrics.scala index ce44215151..8f777cc35b 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/evaluation/RegressionMetrics.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/evaluation/RegressionMetrics.scala @@ -73,7 +73,7 @@ class RegressionMetrics @Since("2.0.0") ( /** * Returns the variance explained by regression. - * explainedVariance = $\sum_i (\hat{y_i} - \bar{y})^2 / n$ + * explainedVariance = $\sum_i (\hat{y_i} - \bar{y})^2^ / n$ * @see [[https://en.wikipedia.org/wiki/Fraction_of_variance_unexplained]] */ @Since("1.2.0") diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.scala index ff1068417d..377be6bfb9 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.scala @@ -429,14 +429,14 @@ class BlockMatrix @Since("1.3.0") ( val rightCounterpartsHelper = rightMatrix.groupBy(_._1).mapValues(_.map(_._2)) val leftDestinations = leftMatrix.map { case (rowIndex, colIndex) => - val rightCounterparts = rightCounterpartsHelper.getOrElse(colIndex, Array()) + val rightCounterparts = rightCounterpartsHelper.getOrElse(colIndex, Array.empty[Int]) val partitions = rightCounterparts.map(b => partitioner.getPartition((rowIndex, b))) ((rowIndex, colIndex), partitions.toSet) }.toMap val leftCounterpartsHelper = leftMatrix.groupBy(_._2).mapValues(_.map(_._1)) val rightDestinations = rightMatrix.map { case (rowIndex, colIndex) => - val leftCounterparts = leftCounterpartsHelper.getOrElse(rowIndex, Array()) + val leftCounterparts = leftCounterpartsHelper.getOrElse(rowIndex, Array.empty[Int]) val partitions = leftCounterparts.map(b => partitioner.getPartition((b, colIndex))) ((rowIndex, colIndex), partitions.toSet) }.toMap diff --git a/mllib/src/test/scala/org/apache/spark/mllib/evaluation/MulticlassMetricsSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/evaluation/MulticlassMetricsSuite.scala index f316c67234..142d1e9812 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/evaluation/MulticlassMetricsSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/evaluation/MulticlassMetricsSuite.scala @@ -36,6 +36,9 @@ class MulticlassMetricsSuite extends SparkFunSuite with MLlibTestSparkContext { (1.0, 1.0), (1.0, 1.0), (2.0, 2.0), (2.0, 0.0)), 2) val metrics = new MulticlassMetrics(predictionAndLabels) val delta = 0.0000001 + val tpRate0 = 2.0 / (2 + 2) + val tpRate1 = 3.0 / (3 + 1) + val tpRate2 = 1.0 / (1 + 0) val fpRate0 = 1.0 / (9 - 4) val fpRate1 = 1.0 / (9 - 4) val fpRate2 = 1.0 / (9 - 1) @@ -53,6 +56,9 @@ class MulticlassMetricsSuite extends SparkFunSuite with MLlibTestSparkContext { val f2measure2 = (1 + 2 * 2) * precision2 * recall2 / (2 * 2 * precision2 + recall2) assert(metrics.confusionMatrix.toArray.sameElements(confusionMatrix.toArray)) + assert(math.abs(metrics.truePositiveRate(0.0) - tpRate0) < delta) + assert(math.abs(metrics.truePositiveRate(1.0) - tpRate1) < delta) + assert(math.abs(metrics.truePositiveRate(2.0) - tpRate2) < delta) assert(math.abs(metrics.falsePositiveRate(0.0) - fpRate0) < delta) assert(math.abs(metrics.falsePositiveRate(1.0) - fpRate1) < delta) assert(math.abs(metrics.falsePositiveRate(2.0) - fpRate2) < delta) @@ -75,6 +81,8 @@ class MulticlassMetricsSuite extends SparkFunSuite with MLlibTestSparkContext { assert(math.abs(metrics.accuracy - metrics.recall) < delta) assert(math.abs(metrics.accuracy - metrics.fMeasure) < delta) assert(math.abs(metrics.accuracy - metrics.weightedRecall) < delta) + assert(math.abs(metrics.weightedTruePositiveRate - + ((4.0 / 9) * tpRate0 + (4.0 / 9) * tpRate1 + (1.0 / 9) * tpRate2)) < delta) assert(math.abs(metrics.weightedFalsePositiveRate - ((4.0 / 9) * fpRate0 + (4.0 / 9) * fpRate1 + (1.0 / 9) * fpRate2)) < delta) assert(math.abs(metrics.weightedPrecision - diff --git a/mllib/src/test/scala/org/apache/spark/mllib/evaluation/MultilabelMetricsSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/evaluation/MultilabelMetricsSuite.scala index f3b19aeb42..a660492c7a 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/evaluation/MultilabelMetricsSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/evaluation/MultilabelMetricsSuite.scala @@ -47,7 +47,7 @@ class MultilabelMetricsSuite extends SparkFunSuite with MLlibTestSparkContext { val scoreAndLabels: RDD[(Array[Double], Array[Double])] = sc.parallelize( Seq((Array(0.0, 1.0), Array(0.0, 2.0)), (Array(0.0, 2.0), Array(0.0, 1.0)), - (Array(), Array(0.0)), + (Array.empty[Double], Array(0.0)), (Array(2.0), Array(2.0)), (Array(2.0, 0.0), Array(2.0, 0.0)), (Array(0.0, 1.0, 2.0), Array(0.0, 1.0)), -- GitLab