diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/DecisionTreeModel.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/DecisionTreeModel.scala index 060fd5b859a5196e1d90df025d8f4dd2d991e318..8a57ebc387d019bc52d20f276e34a1c5eea55857 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/DecisionTreeModel.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/DecisionTreeModel.scala @@ -23,7 +23,7 @@ import org.json4s._ import org.json4s.JsonDSL._ import org.json4s.jackson.JsonMethods._ -import org.apache.spark.SparkContext +import org.apache.spark.{Logging, SparkContext} import org.apache.spark.annotation.Experimental import org.apache.spark.api.java.JavaRDD import org.apache.spark.mllib.linalg.Vector @@ -32,6 +32,7 @@ import org.apache.spark.mllib.tree.configuration.Algo._ import org.apache.spark.mllib.util.{Loader, Saveable} import org.apache.spark.rdd.RDD import org.apache.spark.sql.{DataFrame, Row, SQLContext} +import org.apache.spark.util.Utils /** * :: Experimental :: @@ -115,7 +116,7 @@ class DecisionTreeModel(val topNode: Node, val algo: Algo) extends Serializable override protected def formatVersion: String = "1.0" } -object DecisionTreeModel extends Loader[DecisionTreeModel] { +object DecisionTreeModel extends Loader[DecisionTreeModel] with Logging { private[tree] object SaveLoadV1_0 { @@ -187,6 +188,28 @@ object DecisionTreeModel extends Loader[DecisionTreeModel] { val sqlContext = new SQLContext(sc) import sqlContext.implicits._ + // SPARK-6120: We do a hacky check here so users understand why save() is failing + // when they run the ML guide example. + // TODO: Fix this issue for real. + val memThreshold = 768 + if (sc.isLocal) { + val driverMemory = sc.getConf.getOption("spark.driver.memory") + .orElse(Option(System.getenv("SPARK_DRIVER_MEMORY"))) + .map(Utils.memoryStringToMb) + .getOrElse(512) + if (driverMemory <= memThreshold) { + logWarning(s"$thisClassName.save() was called, but it may fail because of too little" + + s" driver memory (${driverMemory}m)." + + s" If failure occurs, try setting driver-memory ${memThreshold}m (or larger).") + } + } else { + if (sc.executorMemory <= memThreshold) { + logWarning(s"$thisClassName.save() was called, but it may fail because of too little" + + s" executor memory (${sc.executorMemory}m)." + + s" If failure occurs try setting executor-memory ${memThreshold}m (or larger).") + } + } + // Create JSON metadata. val metadata = compact(render( ("class" -> thisClassName) ~ ("version" -> thisFormatVersion) ~ diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/treeEnsembleModels.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/treeEnsembleModels.scala index 4897906aea5b32a31c18519d23496c6dccc1fb13..30a8f7ca301af3041bc898ec7aa36b736b902d70 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/treeEnsembleModels.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/treeEnsembleModels.scala @@ -24,7 +24,7 @@ import org.json4s._ import org.json4s.JsonDSL._ import org.json4s.jackson.JsonMethods._ -import org.apache.spark.SparkContext +import org.apache.spark.{Logging, SparkContext} import org.apache.spark.annotation.Experimental import org.apache.spark.api.java.JavaRDD import org.apache.spark.mllib.linalg.Vector @@ -34,6 +34,7 @@ import org.apache.spark.mllib.tree.configuration.EnsembleCombiningStrategy._ import org.apache.spark.mllib.util.{Loader, Saveable} import org.apache.spark.rdd.RDD import org.apache.spark.sql.SQLContext +import org.apache.spark.util.Utils /** * :: Experimental :: @@ -250,7 +251,7 @@ private[tree] sealed class TreeEnsembleModel( def totalNumNodes: Int = trees.map(_.numNodes).sum } -private[tree] object TreeEnsembleModel { +private[tree] object TreeEnsembleModel extends Logging { object SaveLoadV1_0 { @@ -277,6 +278,28 @@ private[tree] object TreeEnsembleModel { val sqlContext = new SQLContext(sc) import sqlContext.implicits._ + // SPARK-6120: We do a hacky check here so users understand why save() is failing + // when they run the ML guide example. + // TODO: Fix this issue for real. + val memThreshold = 768 + if (sc.isLocal) { + val driverMemory = sc.getConf.getOption("spark.driver.memory") + .orElse(Option(System.getenv("SPARK_DRIVER_MEMORY"))) + .map(Utils.memoryStringToMb) + .getOrElse(512) + if (driverMemory <= memThreshold) { + logWarning(s"$className.save() was called, but it may fail because of too little" + + s" driver memory (${driverMemory}m)." + + s" If failure occurs, try setting driver-memory ${memThreshold}m (or larger).") + } + } else { + if (sc.executorMemory <= memThreshold) { + logWarning(s"$className.save() was called, but it may fail because of too little" + + s" executor memory (${sc.executorMemory}m)." + + s" If failure occurs try setting executor-memory ${memThreshold}m (or larger).") + } + } + // Create JSON metadata. implicit val format = DefaultFormats val ensembleMetadata = Metadata(model.algo.toString, model.trees(0).algo.toString,