From b8ff2bc61c9835867f56afa1860ab5eb727c4a58 Mon Sep 17 00:00:00 2001 From: Reynold Xin <rxin@databricks.com> Date: Mon, 30 Mar 2015 20:47:10 -0700 Subject: [PATCH] [SPARK-6119][SQL] DataFrame support for missing data handling This pull request adds variants of DataFrame.na.drop and DataFrame.na.fill to the Scala/Java API, and DataFrame.fillna and DataFrame.dropna to the Python API. Author: Reynold Xin <rxin@databricks.com> Closes #5274 from rxin/df-missing-value and squashes the following commits: 4ee1b98 [Reynold Xin] Improve error reporting in Python. 33a330c [Reynold Xin] Remove replace for now. bc4fdbb [Reynold Xin] Added documentation for replace. d56f5a5 [Reynold Xin] Added replace for Scala/Java. 2385d00 [Reynold Xin] Feedback from Xiangrui on "how". 914a374 [Reynold Xin] fill with map. 185c67e [Reynold Xin] Allow specifying column subsets in fill. 749eb47 [Reynold Xin] fillna 249b94e [Reynold Xin] Removing undefined functions. 6a73c68 [Reynold Xin] Missing file. 67d7003 [Reynold Xin] [SPARK-6119][SQL] DataFrame.na.drop (Scala/Java) and DataFrame.dropna (Python) --- python/pyspark/sql/dataframe.py | 86 +++++++ python/pyspark/sql/tests.py | 96 ++++++++ .../catalyst/expressions/nullFunctions.scala | 25 +- .../org/apache/spark/sql/DataFrame.scala | 15 +- .../spark/sql/DataFrameNaFunctions.scala | 228 ++++++++++++++++++ .../org/apache/spark/sql/GroupedData.scala | 5 +- .../org/apache/spark/sql/json/JsonRDD.scala | 2 +- .../spark/sql/DataFrameNaFunctionsSuite.scala | 157 ++++++++++++ 8 files changed, 606 insertions(+), 8 deletions(-) create mode 100644 sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala create mode 100644 sql/core/src/test/scala/org/apache/spark/sql/DataFrameNaFunctionsSuite.scala diff --git a/python/pyspark/sql/dataframe.py b/python/pyspark/sql/dataframe.py index 23c0e63e77..4f174de811 100644 --- a/python/pyspark/sql/dataframe.py +++ b/python/pyspark/sql/dataframe.py @@ -690,6 +690,86 @@ class DataFrame(object): """ return DataFrame(getattr(self._jdf, "except")(other._jdf), self.sql_ctx) + def dropna(self, how='any', thresh=None, subset=None): + """Returns a new :class:`DataFrame` omitting rows with null values. + + :param how: 'any' or 'all'. + If 'any', drop a row if it contains any nulls. + If 'all', drop a row only if all its values are null. + :param thresh: int, default None + If specified, drop rows that have less than `thresh` non-null values. + This overwrites the `how` parameter. + :param subset: optional list of column names to consider. + + >>> df4.dropna().show() + age height name + 10 80 Alice + """ + if how is not None and how not in ['any', 'all']: + raise ValueError("how ('" + how + "') should be 'any' or 'all'") + + if subset is None: + subset = self.columns + elif isinstance(subset, basestring): + subset = [subset] + elif not isinstance(subset, (list, tuple)): + raise ValueError("subset should be a list or tuple of column names") + + if thresh is None: + thresh = len(subset) if how == 'any' else 1 + + cols = ListConverter().convert(subset, self.sql_ctx._sc._gateway._gateway_client) + cols = self.sql_ctx._sc._jvm.PythonUtils.toSeq(cols) + return DataFrame(self._jdf.na().drop(thresh, cols), self.sql_ctx) + + def fillna(self, value, subset=None): + """Replace null values. + + :param value: int, long, float, string, or dict. + Value to replace null values with. + If the value is a dict, then `subset` is ignored and `value` must be a mapping + from column name (string) to replacement value. The replacement value must be + an int, long, float, or string. + :param subset: optional list of column names to consider. + Columns specified in subset that do not have matching data type are ignored. + For example, if `value` is a string, and subset contains a non-string column, + then the non-string column is simply ignored. + + >>> df4.fillna(50).show() + age height name + 10 80 Alice + 5 50 Bob + 50 50 Tom + 50 50 null + + >>> df4.fillna({'age': 50, 'name': 'unknown'}).show() + age height name + 10 80 Alice + 5 null Bob + 50 null Tom + 50 null unknown + """ + if not isinstance(value, (float, int, long, basestring, dict)): + raise ValueError("value should be a float, int, long, string, or dict") + + if isinstance(value, (int, long)): + value = float(value) + + if isinstance(value, dict): + value = MapConverter().convert(value, self.sql_ctx._sc._gateway._gateway_client) + return DataFrame(self._jdf.na().fill(value), self.sql_ctx) + elif subset is None: + return DataFrame(self._jdf.na().fill(value), self.sql_ctx) + else: + if isinstance(subset, basestring): + subset = [subset] + elif not isinstance(subset, (list, tuple)): + raise ValueError("subset should be a list or tuple of column names") + + cols = ListConverter().convert(subset, self.sql_ctx._sc._gateway._gateway_client) + cols = self.sql_ctx._sc._jvm.PythonUtils.toSeq(cols) + return DataFrame(self._jdf.na().fill(value, cols), self.sql_ctx) + def withColumn(self, colName, col): """ Return a new :class:`DataFrame` by adding a column. @@ -1069,6 +1149,12 @@ def _test(): globs['df2'] = sc.parallelize([Row(name='Tom', height=80), Row(name='Bob', height=85)]).toDF() globs['df3'] = sc.parallelize([Row(name='Alice', age=2, height=80), Row(name='Bob', age=5, height=85)]).toDF() + + globs['df4'] = sc.parallelize([Row(name='Alice', age=10, height=80), + Row(name='Bob', age=5, height=None), + Row(name='Tom', age=None, height=None), + Row(name=None, age=None, height=None)]).toDF() + (failure_count, test_count) = doctest.testmod( pyspark.sql.dataframe, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF) diff --git a/python/pyspark/sql/tests.py b/python/pyspark/sql/tests.py index 2720439416..258464b7f2 100644 --- a/python/pyspark/sql/tests.py +++ b/python/pyspark/sql/tests.py @@ -415,6 +415,102 @@ class SQLTests(ReusedPySparkTestCase): self.assertEqual(_infer_type(2**61), LongType()) self.assertEqual(_infer_type(2**71), LongType()) + def test_dropna(self): + schema = StructType([ + StructField("name", StringType(), True), + StructField("age", IntegerType(), True), + StructField("height", DoubleType(), True)]) + + # shouldn't drop a non-null row + self.assertEqual(self.sqlCtx.createDataFrame( + [(u'Alice', 50, 80.1)], schema).dropna().count(), + 1) + + # dropping rows with a single null value + self.assertEqual(self.sqlCtx.createDataFrame( + [(u'Alice', None, 80.1)], schema).dropna().count(), + 0) + self.assertEqual(self.sqlCtx.createDataFrame( + [(u'Alice', None, 80.1)], schema).dropna(how='any').count(), + 0) + + # if how = 'all', only drop rows if all values are null + self.assertEqual(self.sqlCtx.createDataFrame( + [(u'Alice', None, 80.1)], schema).dropna(how='all').count(), + 1) + self.assertEqual(self.sqlCtx.createDataFrame( + [(None, None, None)], schema).dropna(how='all').count(), + 0) + + # how and subset + self.assertEqual(self.sqlCtx.createDataFrame( + [(u'Alice', 50, None)], schema).dropna(how='any', subset=['name', 'age']).count(), + 1) + self.assertEqual(self.sqlCtx.createDataFrame( + [(u'Alice', None, None)], schema).dropna(how='any', subset=['name', 'age']).count(), + 0) + + # threshold + self.assertEqual(self.sqlCtx.createDataFrame( + [(u'Alice', None, 80.1)], schema).dropna(thresh=2).count(), + 1) + self.assertEqual(self.sqlCtx.createDataFrame( + [(u'Alice', None, None)], schema).dropna(thresh=2).count(), + 0) + + # threshold and subset + self.assertEqual(self.sqlCtx.createDataFrame( + [(u'Alice', 50, None)], schema).dropna(thresh=2, subset=['name', 'age']).count(), + 1) + self.assertEqual(self.sqlCtx.createDataFrame( + [(u'Alice', None, 180.9)], schema).dropna(thresh=2, subset=['name', 'age']).count(), + 0) + + # thresh should take precedence over how + self.assertEqual(self.sqlCtx.createDataFrame( + [(u'Alice', 50, None)], schema).dropna( + how='any', thresh=2, subset=['name', 'age']).count(), + 1) + + def test_fillna(self): + schema = StructType([ + StructField("name", StringType(), True), + StructField("age", IntegerType(), True), + StructField("height", DoubleType(), True)]) + + # fillna shouldn't change non-null values + row = self.sqlCtx.createDataFrame([(u'Alice', 10, 80.1)], schema).fillna(50).first() + self.assertEqual(row.age, 10) + + # fillna with int + row = self.sqlCtx.createDataFrame([(u'Alice', None, None)], schema).fillna(50).first() + self.assertEqual(row.age, 50) + self.assertEqual(row.height, 50.0) + + # fillna with double + row = self.sqlCtx.createDataFrame([(u'Alice', None, None)], schema).fillna(50.1).first() + self.assertEqual(row.age, 50) + self.assertEqual(row.height, 50.1) + + # fillna with string + row = self.sqlCtx.createDataFrame([(None, None, None)], schema).fillna("hello").first() + self.assertEqual(row.name, u"hello") + self.assertEqual(row.age, None) + + # fillna with subset specified for numeric cols + row = self.sqlCtx.createDataFrame( + [(None, None, None)], schema).fillna(50, subset=['name', 'age']).first() + self.assertEqual(row.name, None) + self.assertEqual(row.age, 50) + self.assertEqual(row.height, None) + + # fillna with subset specified for numeric cols + row = self.sqlCtx.createDataFrame( + [(None, None, None)], schema).fillna("haha", subset=['name', 'age']).first() + self.assertEqual(row.name, "haha") + self.assertEqual(row.age, None) + self.assertEqual(row.height, None) + class HiveContextSQLTests(ReusedPySparkTestCase): diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/nullFunctions.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/nullFunctions.scala index d1f3d4f4ee..f9161cf34f 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/nullFunctions.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/nullFunctions.scala @@ -35,7 +35,7 @@ case class Coalesce(children: Seq[Expression]) extends Expression { override def toString: String = s"Coalesce(${children.mkString(",")})" - def dataType: DataType = if (resolved) { + override def dataType: DataType = if (resolved) { children.head.dataType } else { val childTypes = children.map(c => s"$c: ${c.dataType}").mkString(", ") @@ -74,3 +74,26 @@ case class IsNotNull(child: Expression) extends Predicate with trees.UnaryNode[E child.eval(input) != null } } + +/** + * A predicate that is evaluated to be true if there are at least `n` non-null values. + */ +case class AtLeastNNonNulls(n: Int, children: Seq[Expression]) extends Predicate { + override def nullable: Boolean = false + override def foldable: Boolean = false + override def toString: String = s"AtLeastNNulls(n, ${children.mkString(",")})" + + private[this] val childrenArray = children.toArray + + override def eval(input: Row): Boolean = { + var numNonNulls = 0 + var i = 0 + while (i < childrenArray.length && numNonNulls < n) { + if (childrenArray(i).eval(input) != null) { + numNonNulls += 1 + } + i += 1 + } + numNonNulls >= n + } +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala index 423ef3912b..5cd0a18ff6 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala @@ -237,8 +237,8 @@ class DataFrame private[sql]( def toDF(colNames: String*): DataFrame = { require(schema.size == colNames.size, "The number of columns doesn't match.\n" + - "Old column names: " + schema.fields.map(_.name).mkString(", ") + "\n" + - "New column names: " + colNames.mkString(", ")) + s"Old column names (${schema.size}): " + schema.fields.map(_.name).mkString(", ") + "\n" + + s"New column names (${colNames.size}): " + colNames.mkString(", ")) val newCols = schema.fieldNames.zip(colNames).map { case (oldName, newName) => apply(oldName).as(newName) @@ -319,6 +319,17 @@ class DataFrame private[sql]( */ def show(): Unit = show(20) + /** + * Returns a [[DataFrameNaFunctions]] for working with missing data. + * {{{ + * // Dropping rows containing any null values. + * df.na.drop() + * }}} + * + * @group dfops + */ + def na: DataFrameNaFunctions = new DataFrameNaFunctions(this) + /** * Cartesian join with another [[DataFrame]]. * diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala new file mode 100644 index 0000000000..3a3dc70f72 --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala @@ -0,0 +1,228 @@ +/* +* Licensed to the Apache Software Foundation (ASF) under one or more +* contributor license agreements. See the NOTICE file distributed with +* this work for additional information regarding copyright ownership. +* The ASF licenses this file to You under the Apache License, Version 2.0 +* (the "License"); you may not use this file except in compliance with +* the License. You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +package org.apache.spark.sql + +import java.{lang => jl} + +import scala.collection.JavaConversions._ + +import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.functions._ +import org.apache.spark.sql.types._ + + +/** + * Functionality for working with missing data in [[DataFrame]]s. + */ +final class DataFrameNaFunctions private[sql](df: DataFrame) { + + /** + * Returns a new [[DataFrame]] that drops rows containing any null values. + */ + def drop(): DataFrame = drop("any", df.columns) + + /** + * Returns a new [[DataFrame]] that drops rows containing null values. + * + * If `how` is "any", then drop rows containing any null values. + * If `how` is "all", then drop rows only if every column is null for that row. + */ + def drop(how: String): DataFrame = drop(how, df.columns) + + /** + * Returns a new [[DataFrame]] that drops rows containing any null values + * in the specified columns. + */ + def drop(cols: Array[String]): DataFrame = drop(cols.toSeq) + + /** + * (Scala-specific) Returns a new [[DataFrame ]] that drops rows containing any null values + * in the specified columns. + */ + def drop(cols: Seq[String]): DataFrame = drop(cols.size, cols) + + /** + * Returns a new [[DataFrame]] that drops rows containing null values + * in the specified columns. + * + * If `how` is "any", then drop rows containing any null values in the specified columns. + * If `how` is "all", then drop rows only if every specified column is null for that row. + */ + def drop(how: String, cols: Array[String]): DataFrame = drop(how, cols.toSeq) + + /** + * (Scala-specific) Returns a new [[DataFrame]] that drops rows containing null values + * in the specified columns. + * + * If `how` is "any", then drop rows containing any null values in the specified columns. + * If `how` is "all", then drop rows only if every specified column is null for that row. + */ + def drop(how: String, cols: Seq[String]): DataFrame = { + how.toLowerCase match { + case "any" => drop(cols.size, cols) + case "all" => drop(1, cols) + case _ => throw new IllegalArgumentException(s"how ($how) must be 'any' or 'all'") + } + } + + /** + * Returns a new [[DataFrame]] that drops rows containing less than `minNonNulls` non-null values. + */ + def drop(minNonNulls: Int): DataFrame = drop(minNonNulls, df.columns) + + /** + * Returns a new [[DataFrame]] that drops rows containing less than `minNonNulls` non-null + * values in the specified columns. + */ + def drop(minNonNulls: Int, cols: Array[String]): DataFrame = drop(minNonNulls, cols.toSeq) + + /** + * (Scala-specific) Returns a new [[DataFrame]] that drops rows containing less than + * `minNonNulls` non-null values in the specified columns. + */ + def drop(minNonNulls: Int, cols: Seq[String]): DataFrame = { + // Filtering condition -- only keep the row if it has at least `minNonNulls` non-null values. + val predicate = AtLeastNNonNulls(minNonNulls, cols.map(name => df.resolve(name))) + df.filter(Column(predicate)) + } + + /** + * Returns a new [[DataFrame]] that replaces null values in numeric columns with `value`. + */ + def fill(value: Double): DataFrame = fill(value, df.columns) + + /** + * Returns a new [[DataFrame ]] that replaces null values in string columns with `value`. + */ + def fill(value: String): DataFrame = fill(value, df.columns) + + /** + * Returns a new [[DataFrame]] that replaces null values in specified numeric columns. + * If a specified column is not a numeric column, it is ignored. + */ + def fill(value: Double, cols: Array[String]): DataFrame = fill(value, cols.toSeq) + + /** + * (Scala-specific) Returns a new [[DataFrame]] that replaces null values in specified + * numeric columns. If a specified column is not a numeric column, it is ignored. + */ + def fill(value: Double, cols: Seq[String]): DataFrame = { + val columnEquals = df.sqlContext.analyzer.resolver + val projections = df.schema.fields.map { f => + // Only fill if the column is part of the cols list. + if (f.dataType.isInstanceOf[NumericType] && cols.exists(col => columnEquals(f.name, col))) { + fillCol[Double](f, value) + } else { + df.col(f.name) + } + } + df.select(projections : _*) + } + + /** + * Returns a new [[DataFrame]] that replaces null values in specified string columns. + * If a specified column is not a string column, it is ignored. + */ + def fill(value: String, cols: Array[String]): DataFrame = fill(value, cols.toSeq) + + /** + * (Scala-specific) Returns a new [[DataFrame]] that replaces null values in + * specified string columns. If a specified column is not a string column, it is ignored. + */ + def fill(value: String, cols: Seq[String]): DataFrame = { + val columnEquals = df.sqlContext.analyzer.resolver + val projections = df.schema.fields.map { f => + // Only fill if the column is part of the cols list. + if (f.dataType.isInstanceOf[StringType] && cols.exists(col => columnEquals(f.name, col))) { + fillCol[String](f, value) + } else { + df.col(f.name) + } + } + df.select(projections : _*) + } + + /** + * Returns a new [[DataFrame]] that replaces null values. + * + * The key of the map is the column name, and the value of the map is the replacement value. + * The value must be of the following type: `Integer`, `Long`, `Float`, `Double`, `String`. + * + * For example, the following replaces null values in column "A" with string "unknown", and + * null values in column "B" with numeric value 1.0. + * {{{ + * import com.google.common.collect.ImmutableMap; + * df.na.fill(ImmutableMap.of("A", "unknown", "B", 1.0)); + * }}} + */ + def fill(valueMap: java.util.Map[String, Any]): DataFrame = fill0(valueMap.toSeq) + + /** + * (Scala-specific) Returns a new [[DataFrame]] that replaces null values. + * + * The key of the map is the column name, and the value of the map is the replacement value. + * The value must be of the following type: `Int`, `Long`, `Float`, `Double`, `String`. + * + * For example, the following replaces null values in column "A" with string "unknown", and + * null values in column "B" with numeric value 1.0. + * {{{ + * df.na.fill(Map( + * "A" -> "unknown", + * "B" -> 1.0 + * )) + * }}} + */ + def fill(valueMap: Map[String, Any]): DataFrame = fill0(valueMap.toSeq) + + private def fill0(values: Seq[(String, Any)]): DataFrame = { + // Error handling + values.foreach { case (colName, replaceValue) => + // Check column name exists + df.resolve(colName) + + // Check data type + replaceValue match { + case _: jl.Double | _: jl.Float | _: jl.Integer | _: jl.Long | _: String => + // This is good + case _ => throw new IllegalArgumentException( + s"Unsupported value type ${replaceValue.getClass.getName} ($replaceValue).") + } + } + + val columnEquals = df.sqlContext.analyzer.resolver + val projections = df.schema.fields.map { f => + values.find { case (k, _) => columnEquals(k, f.name) }.map { case (_, v) => + v match { + case v: jl.Float => fillCol[Double](f, v.toDouble) + case v: jl.Double => fillCol[Double](f, v) + case v: jl.Long => fillCol[Double](f, v.toDouble) + case v: jl.Integer => fillCol[Double](f, v.toDouble) + case v: String => fillCol[String](f, v) + } + }.getOrElse(df.col(f.name)) + } + df.select(projections : _*) + } + + /** + * Returns a [[Column]] expression that replaces null value in `col` with `replacement`. + */ + private def fillCol[T](col: StructField, replacement: T): Column = { + coalesce(df.col(col.name), lit(replacement).cast(col.dataType)).as(col.name) + } +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/GroupedData.scala b/sql/core/src/main/scala/org/apache/spark/sql/GroupedData.scala index 45a63ae26e..a5e6b638d2 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/GroupedData.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/GroupedData.scala @@ -127,10 +127,7 @@ class GroupedData protected[sql](df: DataFrame, groupingExprs: Seq[Expression]) * {{{ * // Selects the age of the oldest employee and the aggregate expense for each department * import com.google.common.collect.ImmutableMap; - * df.groupBy("department").agg(ImmutableMap.<String, String>builder() - * .put("age", "max") - * .put("expense", "sum") - * .build()); + * df.groupBy("department").agg(ImmutableMap.of("age", "max", "expense", "sum")); * }}} */ def agg(exprs: java.util.Map[String, String]): DataFrame = { diff --git a/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala b/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala index 2b0358c4e2..0b770f2251 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala @@ -49,7 +49,7 @@ private[sql] object JsonRDD extends Logging { val schemaData = if (samplingRatio > 0.99) json else json.sample(false, samplingRatio, 1) val allKeys = if (schemaData.isEmpty()) { - Set.empty[(String,DataType)] + Set.empty[(String, DataType)] } else { parseJson(schemaData, columnNameOfCorruptRecords).map(allKeysWithValueTypes).reduce(_ ++ _) } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/DataFrameNaFunctionsSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/DataFrameNaFunctionsSuite.scala new file mode 100644 index 0000000000..0896f175c0 --- /dev/null +++ b/sql/core/src/test/scala/org/apache/spark/sql/DataFrameNaFunctionsSuite.scala @@ -0,0 +1,157 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql + +import scala.collection.JavaConversions._ + +import org.apache.spark.sql.test.TestSQLContext.implicits._ + + +class DataFrameNaFunctionsSuite extends QueryTest { + + def createDF(): DataFrame = { + Seq[(String, java.lang.Integer, java.lang.Double)]( + ("Bob", 16, 176.5), + ("Alice", null, 164.3), + ("David", 60, null), + ("Amy", null, null), + (null, null, null)).toDF("name", "age", "height") + } + + test("drop") { + val input = createDF() + val rows = input.collect() + + checkAnswer( + input.na.drop("name" :: Nil), + rows(0) :: rows(1) :: rows(2) :: rows(3) :: Nil) + + checkAnswer( + input.na.drop("age" :: Nil), + rows(0) :: rows(2) :: Nil) + + checkAnswer( + input.na.drop("age" :: "height" :: Nil), + rows(0) :: Nil) + + checkAnswer( + input.na.drop(), + rows(0)) + + // dropna on an a dataframe with no column should return an empty data frame. + val empty = input.sqlContext.emptyDataFrame.select() + assert(empty.na.drop().count() === 0L) + + // Make sure the columns are properly named. + assert(input.na.drop().columns.toSeq === input.columns.toSeq) + } + + test("drop with how") { + val input = createDF() + val rows = input.collect() + + checkAnswer( + input.na.drop("all"), + rows(0) :: rows(1) :: rows(2) :: rows(3) :: Nil) + + checkAnswer( + input.na.drop("any"), + rows(0) :: Nil) + + checkAnswer( + input.na.drop("any", Seq("age", "height")), + rows(0) :: Nil) + + checkAnswer( + input.na.drop("all", Seq("age", "height")), + rows(0) :: rows(1) :: rows(2) :: Nil) + } + + test("drop with threshold") { + val input = createDF() + val rows = input.collect() + + checkAnswer( + input.na.drop(2, Seq("age", "height")), + rows(0) :: Nil) + + checkAnswer( + input.na.drop(3, Seq("name", "age", "height")), + rows(0)) + + // Make sure the columns are properly named. + assert(input.na.drop(2, Seq("age", "height")).columns.toSeq === input.columns.toSeq) + } + + test("fill") { + val input = createDF() + + val fillNumeric = input.na.fill(50.6) + checkAnswer( + fillNumeric, + Row("Bob", 16, 176.5) :: + Row("Alice", 50, 164.3) :: + Row("David", 60, 50.6) :: + Row("Amy", 50, 50.6) :: + Row(null, 50, 50.6) :: Nil) + + // Make sure the columns are properly named. + assert(fillNumeric.columns.toSeq === input.columns.toSeq) + + // string + checkAnswer( + input.na.fill("unknown").select("name"), + Row("Bob") :: Row("Alice") :: Row("David") :: Row("Amy") :: Row("unknown") :: Nil) + assert(input.na.fill("unknown").columns.toSeq === input.columns.toSeq) + + // fill double with subset columns + checkAnswer( + input.na.fill(50.6, "age" :: Nil), + Row("Bob", 16, 176.5) :: + Row("Alice", 50, 164.3) :: + Row("David", 60, null) :: + Row("Amy", 50, null) :: + Row(null, 50, null) :: Nil) + + // fill string with subset columns + checkAnswer( + Seq[(String, String)]((null, null)).toDF("col1", "col2").na.fill("test", "col1" :: Nil), + Row("test", null)) + } + + test("fill with map") { + val df = Seq[(String, String, java.lang.Long, java.lang.Double)]( + (null, null, null, null)).toDF("a", "b", "c", "d") + checkAnswer( + df.na.fill(Map( + "a" -> "test", + "c" -> 1, + "d" -> 2.2 + )), + Row("test", null, 1, 2.2)) + + // Test Java version + checkAnswer( + df.na.fill(mapAsJavaMap(Map( + "a" -> "test", + "c" -> 1, + "d" -> 2.2 + ))), + Row("test", null, 1, 2.2)) + } +} -- GitLab