diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/NaiveBayes.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/NaiveBayes.scala index 7c340312df3e17812a0f9654af05dba81d1100fd..c99ae30155e3f1f8e896ce085e9e0ec50128bff7 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/classification/NaiveBayes.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/classification/NaiveBayes.scala @@ -28,8 +28,9 @@ import org.apache.spark.ml.util._ import org.apache.spark.mllib.classification.{NaiveBayes => OldNaiveBayes} import org.apache.spark.mllib.classification.{NaiveBayesModel => OldNaiveBayesModel} import org.apache.spark.mllib.regression.{LabeledPoint => OldLabeledPoint} +import org.apache.spark.mllib.util.MLUtils import org.apache.spark.rdd.RDD -import org.apache.spark.sql.Dataset +import org.apache.spark.sql.{Dataset, Row} /** * Params for Naive Bayes Classifiers. @@ -275,9 +276,11 @@ object NaiveBayesModel extends MLReadable[NaiveBayesModel] { val metadata = DefaultParamsReader.loadMetadata(path, sc, className) val dataPath = new Path(path, "data").toString - val data = sparkSession.read.parquet(dataPath).select("pi", "theta").head() - val pi = data.getAs[Vector](0) - val theta = data.getAs[Matrix](1) + val data = sparkSession.read.parquet(dataPath) + val vecConverted = MLUtils.convertVectorColumnsToML(data, "pi") + val Row(pi: Vector, theta: Matrix) = MLUtils.convertMatrixColumnsToML(vecConverted, "theta") + .select("pi", "theta") + .head() val model = new NaiveBayesModel(metadata.uid, pi, theta) DefaultParamsReader.getAndSetParams(model, metadata)