diff --git a/core/src/main/scala/spark/RDD.scala b/core/src/main/scala/spark/RDD.scala
index f32ff475da924f848e5f3e9690fc9bc5d9579baf..17869fb31b69055b12f93e979756438737410495 100644
--- a/core/src/main/scala/spark/RDD.scala
+++ b/core/src/main/scala/spark/RDD.scala
@@ -164,16 +164,32 @@ abstract class RDD[T: ClassManifest](@transient sc: SparkContext) extends Serial
   
   // Transformations (return a new RDD)
   
+  /**
+   * Return a new RDD by applying a function to all elements of this RDD.
+   */
   def map[U: ClassManifest](f: T => U): RDD[U] = new MappedRDD(this, sc.clean(f))
-  
+
+  /**
+   *  Return a new RDD by first applying a function to all elements of this
+   *  RDD, and then flattening the results.
+   */
   def flatMap[U: ClassManifest](f: T => TraversableOnce[U]): RDD[U] =
     new FlatMappedRDD(this, sc.clean(f))
-  
+
+  /**
+   * Return a new RDD containing only the elements that satisfy a predicate.
+   */
   def filter(f: T => Boolean): RDD[T] = new FilteredRDD(this, sc.clean(f))
 
+  /**
+   * Return a new RDD containing the distinct elements in this RDD.
+   */
   def distinct(numSplits: Int = splits.size): RDD[T] =
     map(x => (x, null)).reduceByKey((x, y) => x, numSplits).map(_._1)
 
+  /**
+   * Return a sampled subset of this RDD.
+   */
   def sample(withReplacement: Boolean, fraction: Double, seed: Int): RDD[T] =
     new SampledRDD(this, withReplacement, fraction, seed)
 
@@ -222,44 +238,82 @@ abstract class RDD[T: ClassManifest](@transient sc: SparkContext) extends Serial
    */
   def ++(other: RDD[T]): RDD[T] = this.union(other)
 
+  /**
+   * Return an RDD created by coalescing all elements within each partition into an array.
+   */
   def glom(): RDD[Array[T]] = new GlommedRDD(this)
 
   def cartesian[U: ClassManifest](other: RDD[U]): RDD[(T, U)] = new CartesianRDD(sc, this, other)
 
+  /**
+   * Return an RDD of grouped elements. Each group consists of a key and a sequence of elements
+   * mapping to that key.
+   */
   def groupBy[K: ClassManifest](f: T => K, numSplits: Int): RDD[(K, Seq[T])] = {
     val cleanF = sc.clean(f)
     this.map(t => (cleanF(t), t)).groupByKey(numSplits)
   }
 
+  /**
+   * Return an RDD of grouped items.
+   */
   def groupBy[K: ClassManifest](f: T => K): RDD[(K, Seq[T])] = groupBy[K](f, sc.defaultParallelism)
 
+  /**
+   * Return an RDD created by piping elements to a forked external process.
+   */
   def pipe(command: String): RDD[String] = new PipedRDD(this, command)
 
+  /**
+   * Return an RDD created by piping elements to a forked external process.
+   */
   def pipe(command: Seq[String]): RDD[String] = new PipedRDD(this, command)
 
+  /**
+   * Return an RDD created by piping elements to a forked external process.
+   */
   def pipe(command: Seq[String], env: Map[String, String]): RDD[String] =
     new PipedRDD(this, command, env)
 
+  /**
+   * Return a new RDD by applying a function to each partition of this RDD.
+   */
   def mapPartitions[U: ClassManifest](f: Iterator[T] => Iterator[U]): RDD[U] =
     new MapPartitionsRDD(this, sc.clean(f))
 
+   /**
+   * Return a new RDD by applying a function to each partition of this RDD, while tracking the index
+   * of the original partition.
+   */
   def mapPartitionsWithSplit[U: ClassManifest](f: (Int, Iterator[T]) => Iterator[U]): RDD[U] =
     new MapPartitionsWithSplitRDD(this, sc.clean(f))
 
   // Actions (launch a job to return a value to the user program)
-  
+
+  /**
+   * Applies a function f to all elements of this RDD.
+   */
   def foreach(f: T => Unit) {
     val cleanF = sc.clean(f)
     sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
   }
 
+  /**
+   * Return an array that contains all of the elements in this RDD.
+   */
   def collect(): Array[T] = {
     val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
     Array.concat(results: _*)
   }
 
+  /**
+   * Return an array that contains all of the elements in this RDD.
+   */
   def toArray(): Array[T] = collect()
 
+  /**
+   * Reduces the elements of this RDD using the specified associative binary operator.
+   */
   def reduce(f: (T, T) => T): T = {
     val cleanF = sc.clean(f)
     val reducePartition: Iterator[T] => Option[T] = iter => {
@@ -308,7 +362,10 @@ abstract class RDD[T: ClassManifest](@transient sc: SparkContext) extends Serial
         (iter: Iterator[T]) => iter.aggregate(zeroValue)(cleanSeqOp, cleanCombOp))
     return results.fold(zeroValue)(cleanCombOp)
   }
-  
+
+  /**
+   * Return the number of elements in the RDD.
+   */
   def count(): Long = {
     sc.runJob(this, (iter: Iterator[T]) => {
       var result = 0L
@@ -337,8 +394,9 @@ abstract class RDD[T: ClassManifest](@transient sc: SparkContext) extends Serial
   }
 
   /**
-   * Count elements equal to each value, returning a map of (value, count) pairs. The final combine
-   * step happens locally on the master, equivalent to running a single reduce task.
+   * Return the count of each unique value in this RDD as a map of
+   * (value, count) pairs. The final combine step happens locally on the
+   * master, equivalent to running a single reduce task.
    *
    * TODO: This should perhaps be distributed by default.
    */
@@ -404,16 +462,25 @@ abstract class RDD[T: ClassManifest](@transient sc: SparkContext) extends Serial
     return buf.toArray
   }
 
+  /*
+   * Return the first element in this RDD.
+   */
   def first(): T = take(1) match {
     case Array(t) => t
     case _ => throw new UnsupportedOperationException("empty collection")
   }
 
+  /**
+   * Save this RDD as a text file, using string representations of elements.
+   */
   def saveAsTextFile(path: String) {
     this.map(x => (NullWritable.get(), new Text(x.toString)))
       .saveAsHadoopFile[TextOutputFormat[NullWritable, Text]](path)
   }
 
+  /**
+   * Save this RDD as a SequenceFile of serialized objects.
+   */
   def saveAsObjectFile(path: String) {
     this.mapPartitions(iter => iter.grouped(10).map(_.toArray))
       .map(x => (NullWritable.get(), new BytesWritable(Utils.serialize(x))))
diff --git a/core/src/main/scala/spark/SparkContext.scala b/core/src/main/scala/spark/SparkContext.scala
index 84fc541f82ef543f41d85cb8de91433f16bdd9a7..47e002201ba3d79986af6649f05e052ecc059745 100644
--- a/core/src/main/scala/spark/SparkContext.scala
+++ b/core/src/main/scala/spark/SparkContext.scala
@@ -54,15 +54,21 @@ import spark.storage.BlockManagerMaster
  * Main entry point for Spark functionality. A SparkContext represents the connection to a Spark
  * cluster, and can be used to create RDDs, accumulators and broadcast variables on that cluster.
  *
+ * @constructor Returns a new SparkContext.
  * @param master Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]).
  * @param jobName A name for your job, to display on the cluster web UI
- * @param sparkHome Location where Spark is instaled on cluster nodes
+ * @param sparkHome Location where Spark is installed on cluster nodes
  * @param jars Collection of JARs to send to the cluster. These can be paths on the local file
  *             system or HDFS, HTTP, HTTPS, or FTP URLs.
  */
 class SparkContext(master: String, jobName: String, val sparkHome: String, val jars: Seq[String])
   extends Logging {
 
+  /**
+   * @constructor Returns a new SparkContext.
+   * @param master Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]).
+   * @param jobName A name for your job, to display on the cluster web UI
+   */
   def this(master: String, jobName: String) = this(master, jobName, null, Nil)
 
   // Ensure logging is initialized before we spawn any threads