diff --git a/examples/src/main/python/ml/elementwise_product_example.py b/examples/src/main/python/ml/elementwise_product_example.py index 598deae886ee138cb3ddac45e79b37e9bf319329..590053998bccc172d7cd7db037a09ba400b2716f 100644 --- a/examples/src/main/python/ml/elementwise_product_example.py +++ b/examples/src/main/python/ml/elementwise_product_example.py @@ -30,10 +30,12 @@ if __name__ == "__main__": .getOrCreate() # $example on$ + # Create some vector data; also works for sparse vectors data = [(Vectors.dense([1.0, 2.0, 3.0]),), (Vectors.dense([4.0, 5.0, 6.0]),)] df = spark.createDataFrame(data, ["vector"]) transformer = ElementwiseProduct(scalingVec=Vectors.dense([0.0, 1.0, 2.0]), inputCol="vector", outputCol="transformedVector") + # Batch transform the vectors to create new column: transformer.transform(df).show() # $example off$ diff --git a/examples/src/main/python/ml/polynomial_expansion_example.py b/examples/src/main/python/ml/polynomial_expansion_example.py index 9475e33218cfd4e8e1a73791a024c5d44b11a535..b46c1ba2f4391d19f7b908b56ac64f2f20ca5dc1 100644 --- a/examples/src/main/python/ml/polynomial_expansion_example.py +++ b/examples/src/main/python/ml/polynomial_expansion_example.py @@ -35,7 +35,7 @@ if __name__ == "__main__": (Vectors.dense([0.0, 0.0]),), (Vectors.dense([0.6, -1.1]),)], ["features"]) - px = PolynomialExpansion(degree=2, inputCol="features", outputCol="polyFeatures") + px = PolynomialExpansion(degree=3, inputCol="features", outputCol="polyFeatures") polyDF = px.transform(df) for expanded in polyDF.select("polyFeatures").take(3): print(expanded) diff --git a/examples/src/main/python/ml/quantile_discretizer_example.py b/examples/src/main/python/ml/quantile_discretizer_example.py index 5444cacd957f307cb54752321081d9d6e22b5034..6f422f840ad282849e2d7970bafc77bdd6f14bd8 100644 --- a/examples/src/main/python/ml/quantile_discretizer_example.py +++ b/examples/src/main/python/ml/quantile_discretizer_example.py @@ -24,7 +24,7 @@ from pyspark.sql import SparkSession if __name__ == "__main__": - spark = SparkSession.builder.appName("PythonQuantileDiscretizerExample").getOrCreate() + spark = SparkSession.builder.appName("QuantileDiscretizerExample").getOrCreate() # $example on$ data = [(0, 18.0,), (1, 19.0,), (2, 8.0,), (3, 5.0,), (4, 2.2,)] diff --git a/examples/src/main/python/ml/random_forest_classifier_example.py b/examples/src/main/python/ml/random_forest_classifier_example.py index a7fc765318b991687dc0105c21adc219a448bfb5..eb9ded9af555ed82ca5b19269f8fa2c4db1f8a6b 100644 --- a/examples/src/main/python/ml/random_forest_classifier_example.py +++ b/examples/src/main/python/ml/random_forest_classifier_example.py @@ -50,7 +50,7 @@ if __name__ == "__main__": (trainingData, testData) = data.randomSplit([0.7, 0.3]) # Train a RandomForest model. - rf = RandomForestClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures") + rf = RandomForestClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures", numTrees=10) # Chain indexers and forest in a Pipeline pipeline = Pipeline(stages=[labelIndexer, featureIndexer, rf]) diff --git a/examples/src/main/python/ml/simple_text_classification_pipeline.py b/examples/src/main/python/ml/simple_text_classification_pipeline.py index 886f43c0b08e8e8089f62fefa149146d42deebae..b528b59be9621238b5fa57a50700222f95dd6c51 100644 --- a/examples/src/main/python/ml/simple_text_classification_pipeline.py +++ b/examples/src/main/python/ml/simple_text_classification_pipeline.py @@ -48,7 +48,7 @@ if __name__ == "__main__": # Configure an ML pipeline, which consists of tree stages: tokenizer, hashingTF, and lr. tokenizer = Tokenizer(inputCol="text", outputCol="words") - hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features") + hashingTF = HashingTF(numFeatures=1000, inputCol=tokenizer.getOutputCol(), outputCol="features") lr = LogisticRegression(maxIter=10, regParam=0.001) pipeline = Pipeline(stages=[tokenizer, hashingTF, lr]) diff --git a/examples/src/main/scala/org/apache/spark/examples/ml/DataFrameExample.scala b/examples/src/main/scala/org/apache/spark/examples/ml/DataFrameExample.scala index 11faa6192b3fc26da36987a22a24563b70b36c9a..38c1c1c1865b096c2a2860859ff92198e9d442f9 100644 --- a/examples/src/main/scala/org/apache/spark/examples/ml/DataFrameExample.scala +++ b/examples/src/main/scala/org/apache/spark/examples/ml/DataFrameExample.scala @@ -20,7 +20,6 @@ package org.apache.spark.examples.ml import java.io.File -import com.google.common.io.Files import scopt.OptionParser import org.apache.spark.examples.mllib.AbstractParams diff --git a/examples/src/main/scala/org/apache/spark/examples/ml/GaussianMixtureExample.scala b/examples/src/main/scala/org/apache/spark/examples/ml/GaussianMixtureExample.scala index c484ee55569b99a4fdc5fd80709f3a17fae5c54c..2c2bf421bc5d3d492c86934aa52686ba474c1310 100644 --- a/examples/src/main/scala/org/apache/spark/examples/ml/GaussianMixtureExample.scala +++ b/examples/src/main/scala/org/apache/spark/examples/ml/GaussianMixtureExample.scala @@ -21,8 +21,8 @@ package org.apache.spark.examples.ml // $example on$ import org.apache.spark.ml.clustering.GaussianMixture -import org.apache.spark.sql.SparkSession // $example off$ +import org.apache.spark.sql.SparkSession /** * An example demonstrating Gaussian Mixture Model (GMM). diff --git a/examples/src/main/scala/org/apache/spark/examples/ml/NaiveBayesExample.scala b/examples/src/main/scala/org/apache/spark/examples/ml/NaiveBayesExample.scala index a59ba182fc2083398609eb77fba70452b93b0d21..7089a4bc87aaa0788da33533ad2549da40193ad7 100644 --- a/examples/src/main/scala/org/apache/spark/examples/ml/NaiveBayesExample.scala +++ b/examples/src/main/scala/org/apache/spark/examples/ml/NaiveBayesExample.scala @@ -35,7 +35,7 @@ object NaiveBayesExample { val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") // Split the data into training and test sets (30% held out for testing) - val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3)) + val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3), seed = 1234L) // Train a NaiveBayes model. val model = new NaiveBayes()