From a458efc66c31dc281af379b914bfa2b077ca6635 Mon Sep 17 00:00:00 2001
From: Reynold Xin <rxin@databricks.com>
Date: Tue, 23 Jun 2015 19:30:25 -0700
Subject: [PATCH] Revert "[SPARK-7157][SQL] add sampleBy to DataFrame"

This reverts commit 0401cbaa8ee51c71f43604f338b65022a479da0a.

The new test case on Jenkins is failing.
---
 python/pyspark/sql/dataframe.py               | 40 -------------------
 .../spark/sql/DataFrameStatFunctions.scala    | 24 -----------
 .../apache/spark/sql/DataFrameStatSuite.scala | 12 +-----
 3 files changed, 2 insertions(+), 74 deletions(-)

diff --git a/python/pyspark/sql/dataframe.py b/python/pyspark/sql/dataframe.py
index 213338dfe5..152b87351d 100644
--- a/python/pyspark/sql/dataframe.py
+++ b/python/pyspark/sql/dataframe.py
@@ -448,41 +448,6 @@ class DataFrame(object):
         rdd = self._jdf.sample(withReplacement, fraction, long(seed))
         return DataFrame(rdd, self.sql_ctx)
 
-    @since(1.5)
-    def sampleBy(self, col, fractions, seed=None):
-        """
-        Returns a stratified sample without replacement based on the
-        fraction given on each stratum.
-
-        :param col: column that defines strata
-        :param fractions:
-            sampling fraction for each stratum. If a stratum is not
-            specified, we treat its fraction as zero.
-        :param seed: random seed
-        :return: a new DataFrame that represents the stratified sample
-
-        >>> from pyspark.sql.functions import col
-        >>> dataset = sqlContext.range(0, 100).select((col("id") % 3).alias("key"))
-        >>> sampled = dataset.sampleBy("key", fractions={0: 0.1, 1: 0.2}, seed=0)
-        >>> sampled.groupBy("key").count().orderBy("key").show()
-        +---+-----+
-        |key|count|
-        +---+-----+
-        |  0|    5|
-        |  1|    8|
-        +---+-----+
-        """
-        if not isinstance(col, str):
-            raise ValueError("col must be a string, but got %r" % type(col))
-        if not isinstance(fractions, dict):
-            raise ValueError("fractions must be a dict but got %r" % type(fractions))
-        for k, v in fractions.items():
-            if not isinstance(k, (float, int, long, basestring)):
-                raise ValueError("key must be float, int, long, or string, but got %r" % type(k))
-            fractions[k] = float(v)
-        seed = seed if seed is not None else random.randint(0, sys.maxsize)
-        return DataFrame(self._jdf.stat().sampleBy(col, self._jmap(fractions), seed), self.sql_ctx)
-
     @since(1.4)
     def randomSplit(self, weights, seed=None):
         """Randomly splits this :class:`DataFrame` with the provided weights.
@@ -1357,11 +1322,6 @@ class DataFrameStatFunctions(object):
 
     freqItems.__doc__ = DataFrame.freqItems.__doc__
 
-    def sampleBy(self, col, fractions, seed=None):
-        return self.df.sampleBy(col, fractions, seed)
-
-    sampleBy.__doc__ = DataFrame.sampleBy.__doc__
-
 
 def _test():
     import doctest
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameStatFunctions.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameStatFunctions.scala
index 955d28771b..edb9ed7bba 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameStatFunctions.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameStatFunctions.scala
@@ -17,8 +17,6 @@
 
 package org.apache.spark.sql
 
-import java.util.UUID
-
 import org.apache.spark.annotation.Experimental
 import org.apache.spark.sql.execution.stat._
 
@@ -165,26 +163,4 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
   def freqItems(cols: Seq[String]): DataFrame = {
     FrequentItems.singlePassFreqItems(df, cols, 0.01)
   }
-
-  /**
-   * Returns a stratified sample without replacement based on the fraction given on each stratum.
-   * @param col column that defines strata
-   * @param fractions sampling fraction for each stratum. If a stratum is not specified, we treat
-   *                  its fraction as zero.
-   * @param seed random seed
-   * @return a new [[DataFrame]] that represents the stratified sample
-   *
-   * @since 1.5.0
-   */
-  def sampleBy(col: String, fractions: Map[Any, Double], seed: Long): DataFrame = {
-    require(fractions.values.forall(p => p >= 0.0 && p <= 1.0),
-      s"Fractions must be in [0, 1], but got $fractions.")
-    import org.apache.spark.sql.functions.rand
-    val c = Column(col)
-    val r = rand(seed).as("rand_" + UUID.randomUUID().toString.take(8))
-    val expr = fractions.toSeq.map { case (k, v) =>
-      (c === k) && (r < v)
-    }.reduce(_ || _) || false
-    df.filter(expr)
-  }
 }
diff --git a/sql/core/src/test/scala/org/apache/spark/sql/DataFrameStatSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/DataFrameStatSuite.scala
index 3dd4688912..0d3ff899da 100644
--- a/sql/core/src/test/scala/org/apache/spark/sql/DataFrameStatSuite.scala
+++ b/sql/core/src/test/scala/org/apache/spark/sql/DataFrameStatSuite.scala
@@ -19,9 +19,9 @@ package org.apache.spark.sql
 
 import org.scalatest.Matchers._
 
-import org.apache.spark.sql.functions.col
+import org.apache.spark.SparkFunSuite
 
-class DataFrameStatSuite extends QueryTest {
+class DataFrameStatSuite extends SparkFunSuite  {
 
   private val sqlCtx = org.apache.spark.sql.test.TestSQLContext
   import sqlCtx.implicits._
@@ -98,12 +98,4 @@ class DataFrameStatSuite extends QueryTest {
     val items2 = singleColResults.collect().head
     items2.getSeq[Double](0) should contain (-1.0)
   }
-
-  test("sampleBy") {
-    val df = sqlCtx.range(0, 100).select((col("id") % 3).as("key"))
-    val sampled = df.stat.sampleBy("key", Map(0 -> 0.1, 1 -> 0.2), 0L)
-    checkAnswer(
-      sampled.groupBy("key").count().orderBy("key"),
-      Seq(Row(0, 4), Row(1, 9)))
-  }
 }
-- 
GitLab