diff --git a/R/pkg/R/mllib_regression.R b/R/pkg/R/mllib_regression.R index a480168a29126143347de500f5339ac911d16125..0e07d3bfd899c39932c4f0e5cd745014973a7b87 100644 --- a/R/pkg/R/mllib_regression.R +++ b/R/pkg/R/mllib_regression.R @@ -52,6 +52,8 @@ setClass("IsotonicRegressionModel", representation(jobj = "jobj")) #' This can be a character string naming a family function, a family function or #' the result of a call to a family function. Refer R family at #' \url{https://stat.ethz.ch/R-manual/R-devel/library/stats/html/family.html}. +#' Currently these families are supported: \code{binomial}, \code{gaussian}, +#' \code{Gamma}, and \code{poisson}. #' @param tol positive convergence tolerance of iterations. #' @param maxIter integer giving the maximal number of IRLS iterations. #' @param weightCol the weight column name. If this is not set or \code{NULL}, we treat all instance @@ -104,8 +106,9 @@ setMethod("spark.glm", signature(data = "SparkDataFrame", formula = "formula"), weightCol <- "" } + # For known families, Gamma is upper-cased jobj <- callJStatic("org.apache.spark.ml.r.GeneralizedLinearRegressionWrapper", - "fit", formula, data@sdf, family$family, family$link, + "fit", formula, data@sdf, tolower(family$family), family$link, tol, as.integer(maxIter), as.character(weightCol), regParam) new("GeneralizedLinearRegressionModel", jobj = jobj) }) @@ -120,6 +123,8 @@ setMethod("spark.glm", signature(data = "SparkDataFrame", formula = "formula"), #' This can be a character string naming a family function, a family function or #' the result of a call to a family function. Refer R family at #' \url{https://stat.ethz.ch/R-manual/R-devel/library/stats/html/family.html}. +#' Currently these families are supported: \code{binomial}, \code{gaussian}, +#' \code{Gamma}, and \code{poisson}. #' @param weightCol the weight column name. If this is not set or \code{NULL}, we treat all instance #' weights as 1.0. #' @param epsilon positive convergence tolerance of iterations. diff --git a/R/pkg/R/sparkR.R b/R/pkg/R/sparkR.R index e9d42c1e0a7dced20162c152b42ef429882f0081..870e76b7292fa83ecc72d58950d3082364182605 100644 --- a/R/pkg/R/sparkR.R +++ b/R/pkg/R/sparkR.R @@ -423,7 +423,7 @@ sparkR.session <- function( #' sparkR.session() #' url <- sparkR.uiWebUrl() #' } -#' @note sparkR.uiWebUrl since 2.2.0 +#' @note sparkR.uiWebUrl since 2.1.1 sparkR.uiWebUrl <- function() { sc <- sparkR.callJMethod(getSparkContext(), "sc") u <- callJMethod(sc, "uiWebUrl") diff --git a/R/pkg/inst/tests/testthat/test_mllib_regression.R b/R/pkg/inst/tests/testthat/test_mllib_regression.R index e20dafa4147af151760b86d8148027dcca2bdf77..c450a151713ffe91f9b06c6fcbc2d99efad5e622 100644 --- a/R/pkg/inst/tests/testthat/test_mllib_regression.R +++ b/R/pkg/inst/tests/testthat/test_mllib_regression.R @@ -61,14 +61,22 @@ test_that("spark.glm and predict", { # poisson family model <- spark.glm(training, Sepal_Width ~ Sepal_Length + Species, - family = poisson(link = identity)) + family = poisson(link = identity)) prediction <- predict(model, training) expect_equal(typeof(take(select(prediction, "prediction"), 1)$prediction), "double") vals <- collect(select(prediction, "prediction")) rVals <- suppressWarnings(predict(glm(Sepal.Width ~ Sepal.Length + Species, - data = iris, family = poisson(link = identity)), iris)) + data = iris, family = poisson(link = identity)), iris)) expect_true(all(abs(rVals - vals) < 1e-6), rVals - vals) + # Gamma family + x <- runif(100, -1, 1) + y <- rgamma(100, rate = 10 / exp(0.5 + 1.2 * x), shape = 10) + df <- as.DataFrame(as.data.frame(list(x = x, y = y))) + model <- glm(y ~ x, family = Gamma, df) + out <- capture.output(print(summary(model))) + expect_true(any(grepl("Dispersion parameter for gamma family", out))) + # Test stats::predict is working x <- rnorm(15) y <- x + rnorm(15) @@ -103,11 +111,11 @@ test_that("spark.glm summary", { df <- suppressWarnings(createDataFrame(iris)) training <- df[df$Species %in% c("versicolor", "virginica"), ] stats <- summary(spark.glm(training, Species ~ Sepal_Length + Sepal_Width, - family = binomial(link = "logit"))) + family = binomial(link = "logit"))) rTraining <- iris[iris$Species %in% c("versicolor", "virginica"), ] rStats <- summary(glm(Species ~ Sepal.Length + Sepal.Width, data = rTraining, - family = binomial(link = "logit"))) + family = binomial(link = "logit"))) coefs <- unlist(stats$coefficients) rCoefs <- unlist(rStats$coefficients) @@ -222,7 +230,7 @@ test_that("glm and predict", { training <- suppressWarnings(createDataFrame(iris)) # gaussian family model <- glm(Sepal_Width ~ Sepal_Length + Species, data = training) - prediction <- predict(model, training) + prediction <- predict(model, training) expect_equal(typeof(take(select(prediction, "prediction"), 1)$prediction), "double") vals <- collect(select(prediction, "prediction")) rVals <- predict(glm(Sepal.Width ~ Sepal.Length + Species, data = iris), iris) @@ -235,7 +243,7 @@ test_that("glm and predict", { expect_equal(typeof(take(select(prediction, "prediction"), 1)$prediction), "double") vals <- collect(select(prediction, "prediction")) rVals <- suppressWarnings(predict(glm(Sepal.Width ~ Sepal.Length + Species, - data = iris, family = poisson(link = identity)), iris)) + data = iris, family = poisson(link = identity)), iris)) expect_true(all(abs(rVals - vals) < 1e-6), rVals - vals) # Test stats::predict is working @@ -268,11 +276,11 @@ test_that("glm summary", { df <- suppressWarnings(createDataFrame(iris)) training <- df[df$Species %in% c("versicolor", "virginica"), ] stats <- summary(glm(Species ~ Sepal_Length + Sepal_Width, data = training, - family = binomial(link = "logit"))) + family = binomial(link = "logit"))) rTraining <- iris[iris$Species %in% c("versicolor", "virginica"), ] rStats <- summary(glm(Species ~ Sepal.Length + Sepal.Width, data = rTraining, - family = binomial(link = "logit"))) + family = binomial(link = "logit"))) coefs <- unlist(stats$coefficients) rCoefs <- unlist(rStats$coefficients) @@ -409,7 +417,7 @@ test_that("spark.survreg", { x = c(0, 2, 1, 1, 1, 0, 0), sex = c(0, 0, 0, 0, 1, 1, 1)) expect_error( model <- survival::survreg(formula = survival::Surv(time, status) ~ x + sex, data = rData), - NA) + NA) expect_equal(predict(model, rData)[[1]], 3.724591, tolerance = 1e-4) } })