diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala index 1b45eafbaca2340bbe3508bd30381fba79c492e2..aaaf7df34576a7f53c157e6c07cdbbd586ed3f1a 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala @@ -21,7 +21,7 @@ import scala.collection.JavaConverters._ import org.apache.hadoop.fs.Path -import org.apache.spark.annotation.{Experimental, Since} +import org.apache.spark.annotation.Since import org.apache.spark.ml.{PredictionModel, Predictor, PredictorParams} import org.apache.spark.ml.ann.{FeedForwardTopology, FeedForwardTrainer} import org.apache.spark.ml.feature.LabeledPoint @@ -135,7 +135,6 @@ private object LabelConverter { } /** - * :: Experimental :: * Classifier trainer based on the Multilayer Perceptron. * Each layer has sigmoid activation function, output layer has softmax. * Number of inputs has to be equal to the size of feature vectors. @@ -143,7 +142,6 @@ private object LabelConverter { * */ @Since("1.5.0") -@Experimental class MultilayerPerceptronClassifier @Since("1.5.0") ( @Since("1.5.0") override val uid: String) extends Predictor[Vector, MultilayerPerceptronClassifier, MultilayerPerceptronClassificationModel] @@ -282,7 +280,6 @@ object MultilayerPerceptronClassifier } /** - * :: Experimental :: * Classification model based on the Multilayer Perceptron. * Each layer has sigmoid activation function, output layer has softmax. * @@ -291,7 +288,6 @@ object MultilayerPerceptronClassifier * @param weights the weights of layers */ @Since("1.5.0") -@Experimental class MultilayerPerceptronClassificationModel private[ml] ( @Since("1.5.0") override val uid: String, @Since("1.5.0") val layers: Array[Int], diff --git a/mllib/src/main/scala/org/apache/spark/ml/clustering/BisectingKMeans.scala b/mllib/src/main/scala/org/apache/spark/ml/clustering/BisectingKMeans.scala index e58df6ba9108ab53480679efe72dbdbe6c57555d..4c20e6563bad17804392dc5ce39de83c85c1d82a 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/clustering/BisectingKMeans.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/clustering/BisectingKMeans.scala @@ -80,13 +80,11 @@ private[clustering] trait BisectingKMeansParams extends Params } /** - * :: Experimental :: * Model fitted by BisectingKMeans. * * @param parentModel a model trained by [[org.apache.spark.mllib.clustering.BisectingKMeans]]. */ @Since("2.0.0") -@Experimental class BisectingKMeansModel private[ml] ( @Since("2.0.0") override val uid: String, private val parentModel: MLlibBisectingKMeansModel @@ -197,8 +195,6 @@ object BisectingKMeansModel extends MLReadable[BisectingKMeansModel] { } /** - * :: Experimental :: - * * A bisecting k-means algorithm based on the paper "A comparison of document clustering techniques" * by Steinbach, Karypis, and Kumar, with modification to fit Spark. * The algorithm starts from a single cluster that contains all points. @@ -213,7 +209,6 @@ object BisectingKMeansModel extends MLReadable[BisectingKMeansModel] { * KDD Workshop on Text Mining, 2000.</a> */ @Since("2.0.0") -@Experimental class BisectingKMeans @Since("2.0.0") ( @Since("2.0.0") override val uid: String) extends Estimator[BisectingKMeansModel] with BisectingKMeansParams with DefaultParamsWritable { diff --git a/mllib/src/main/scala/org/apache/spark/ml/clustering/GaussianMixture.scala b/mllib/src/main/scala/org/apache/spark/ml/clustering/GaussianMixture.scala index c764c3aa32a4c3b38ac1d03438b35fb775cddee7..ac56845581ae9800705561087bb8c36b2d12c5d4 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/clustering/GaussianMixture.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/clustering/GaussianMixture.scala @@ -68,8 +68,6 @@ private[clustering] trait GaussianMixtureParams extends Params with HasMaxIter w } /** - * :: Experimental :: - * * Multivariate Gaussian Mixture Model (GMM) consisting of k Gaussians, where points * are drawn from each Gaussian i with probability weights(i). * @@ -80,7 +78,6 @@ private[clustering] trait GaussianMixtureParams extends Params with HasMaxIter w * the Multivariate Gaussian (Normal) Distribution for Gaussian i */ @Since("2.0.0") -@Experimental class GaussianMixtureModel private[ml] ( @Since("2.0.0") override val uid: String, @Since("2.0.0") val weights: Array[Double], @@ -265,7 +262,6 @@ object GaussianMixtureModel extends MLReadable[GaussianMixtureModel] { } /** - * :: Experimental :: * Gaussian Mixture clustering. * * This class performs expectation maximization for multivariate Gaussian @@ -284,7 +280,6 @@ object GaussianMixtureModel extends MLReadable[GaussianMixtureModel] { * on statistical/theoretical arguments) and (b) numerical issues with Gaussian distributions. */ @Since("2.0.0") -@Experimental class GaussianMixture @Since("2.0.0") ( @Since("2.0.0") override val uid: String) extends Estimator[GaussianMixtureModel] with GaussianMixtureParams with DefaultParamsWritable { diff --git a/mllib/src/main/scala/org/apache/spark/ml/clustering/KMeans.scala b/mllib/src/main/scala/org/apache/spark/ml/clustering/KMeans.scala index ad4f79a79c90f2b13010b4cb2ad3a4a1114ef496..e168a418cbb4247b046d099600cc21ad2355d03f 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/clustering/KMeans.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/clustering/KMeans.scala @@ -96,13 +96,11 @@ private[clustering] trait KMeansParams extends Params with HasMaxIter with HasFe } /** - * :: Experimental :: * Model fitted by KMeans. * * @param parentModel a model trained by spark.mllib.clustering.KMeans. */ @Since("1.5.0") -@Experimental class KMeansModel private[ml] ( @Since("1.5.0") override val uid: String, private val parentModel: MLlibKMeansModel) @@ -248,13 +246,11 @@ object KMeansModel extends MLReadable[KMeansModel] { } /** - * :: Experimental :: * K-means clustering with support for k-means|| initialization proposed by Bahmani et al. * * @see <a href="http://dx.doi.org/10.14778/2180912.2180915">Bahmani et al., Scalable k-means++.</a> */ @Since("1.5.0") -@Experimental class KMeans @Since("1.5.0") ( @Since("1.5.0") override val uid: String) extends Estimator[KMeansModel] with KMeansParams with DefaultParamsWritable { diff --git a/mllib/src/main/scala/org/apache/spark/ml/clustering/LDA.scala b/mllib/src/main/scala/org/apache/spark/ml/clustering/LDA.scala index cd403d842b694c7ab8a699d767c6b397eb425720..583e5e0928eba8c5666e279f2b51adba0a8a80c4 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/clustering/LDA.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/clustering/LDA.scala @@ -22,7 +22,7 @@ import org.json4s.DefaultFormats import org.json4s.JsonAST.JObject import org.json4s.jackson.JsonMethods._ -import org.apache.spark.annotation.{DeveloperApi, Experimental, Since} +import org.apache.spark.annotation.{DeveloperApi, Since} import org.apache.spark.internal.Logging import org.apache.spark.ml.{Estimator, Model} import org.apache.spark.ml.linalg.{Matrix, Vector, Vectors, VectorUDT} @@ -396,15 +396,13 @@ private object LDAParams { /** - * :: Experimental :: * Model fitted by [[LDA]]. * * @param vocabSize Vocabulary size (number of terms or words in the vocabulary) * @param sparkSession Used to construct local DataFrames for returning query results */ @Since("1.6.0") -@Experimental -sealed abstract class LDAModel private[ml] ( +abstract class LDAModel private[ml] ( @Since("1.6.0") override val uid: String, @Since("1.6.0") val vocabSize: Int, @Since("1.6.0") @transient private[ml] val sparkSession: SparkSession) @@ -556,14 +554,12 @@ sealed abstract class LDAModel private[ml] ( /** - * :: Experimental :: * * Local (non-distributed) model fitted by [[LDA]]. * * This model stores the inferred topics only; it does not store info about the training dataset. */ @Since("1.6.0") -@Experimental class LocalLDAModel private[ml] ( uid: String, vocabSize: Int, @@ -641,7 +637,6 @@ object LocalLDAModel extends MLReadable[LocalLDAModel] { /** - * :: Experimental :: * * Distributed model fitted by [[LDA]]. * This type of model is currently only produced by Expectation-Maximization (EM). @@ -653,7 +648,6 @@ object LocalLDAModel extends MLReadable[LocalLDAModel] { * `copy()` cheap. */ @Since("1.6.0") -@Experimental class DistributedLDAModel private[ml] ( uid: String, vocabSize: Int, @@ -789,7 +783,6 @@ object DistributedLDAModel extends MLReadable[DistributedLDAModel] { /** - * :: Experimental :: * * Latent Dirichlet Allocation (LDA), a topic model designed for text documents. * @@ -813,7 +806,6 @@ object DistributedLDAModel extends MLReadable[DistributedLDAModel] { * Latent Dirichlet allocation (Wikipedia)</a> */ @Since("1.6.0") -@Experimental class LDA @Since("1.6.0") ( @Since("1.6.0") override val uid: String) extends Estimator[LDAModel] with LDAParams with DefaultParamsWritable { diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/LabeledPoint.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/LabeledPoint.scala index 7d8e4adcc2259f9abdd7f75a76ed5746d364c67e..c5d0ec1a8d350b4f342425cd24263b86c68e4913 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/LabeledPoint.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/LabeledPoint.scala @@ -19,11 +19,10 @@ package org.apache.spark.ml.feature import scala.beans.BeanInfo -import org.apache.spark.annotation.{Experimental, Since} +import org.apache.spark.annotation.Since import org.apache.spark.ml.linalg.Vector /** - * :: Experimental :: * * Class that represents the features and label of a data point. * @@ -31,7 +30,6 @@ import org.apache.spark.ml.linalg.Vector * @param features List of features for this data point. */ @Since("2.0.0") -@Experimental @BeanInfo case class LabeledPoint(@Since("2.0.0") label: Double, @Since("2.0.0") features: Vector) { override def toString: String = { diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/MaxAbsScaler.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/MaxAbsScaler.scala index acabf0b892660e6445e24fced3e0431fffbea074..85f9732f79f6729305a8e38e085fe6f8af69b394 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/MaxAbsScaler.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/MaxAbsScaler.scala @@ -19,7 +19,7 @@ package org.apache.spark.ml.feature import org.apache.hadoop.fs.Path -import org.apache.spark.annotation.{Experimental, Since} +import org.apache.spark.annotation.Since import org.apache.spark.ml.{Estimator, Model} import org.apache.spark.ml.linalg.{Vector, Vectors, VectorUDT} import org.apache.spark.ml.param.{ParamMap, Params} @@ -48,12 +48,10 @@ private[feature] trait MaxAbsScalerParams extends Params with HasInputCol with H } /** - * :: Experimental :: * Rescale each feature individually to range [-1, 1] by dividing through the largest maximum * absolute value in each feature. It does not shift/center the data, and thus does not destroy * any sparsity. */ -@Experimental @Since("2.0.0") class MaxAbsScaler @Since("2.0.0") (@Since("2.0.0") override val uid: String) extends Estimator[MaxAbsScalerModel] with MaxAbsScalerParams with DefaultParamsWritable { @@ -101,11 +99,9 @@ object MaxAbsScaler extends DefaultParamsReadable[MaxAbsScaler] { } /** - * :: Experimental :: * Model fitted by [[MaxAbsScaler]]. * */ -@Experimental @Since("2.0.0") class MaxAbsScalerModel private[ml] ( @Since("2.0.0") override val uid: String, diff --git a/mllib/src/main/scala/org/apache/spark/ml/util/ReadWrite.scala b/mllib/src/main/scala/org/apache/spark/ml/util/ReadWrite.scala index 95f480455ee451cb938523c107a28f4bb4780569..c0e3801499818b10c38d3cb1d2daa137a7391ccc 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/util/ReadWrite.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/util/ReadWrite.scala @@ -26,7 +26,7 @@ import org.json4s.JsonDSL._ import org.json4s.jackson.JsonMethods._ import org.apache.spark.SparkContext -import org.apache.spark.annotation.{DeveloperApi, Experimental, Since} +import org.apache.spark.annotation.{DeveloperApi, Since} import org.apache.spark.internal.Logging import org.apache.spark.ml._ import org.apache.spark.ml.classification.{OneVsRest, OneVsRestModel} @@ -81,11 +81,8 @@ private[util] sealed trait BaseReadWrite { } /** - * :: Experimental :: - * * Abstract class for utility classes that can save ML instances. */ -@Experimental @Since("1.6.0") abstract class MLWriter extends BaseReadWrite with Logging { @@ -138,11 +135,8 @@ abstract class MLWriter extends BaseReadWrite with Logging { } /** - * :: Experimental :: - * * Trait for classes that provide [[MLWriter]]. */ -@Experimental @Since("1.6.0") trait MLWritable { @@ -178,13 +172,10 @@ trait DefaultParamsWritable extends MLWritable { self: Params => } /** - * :: Experimental :: - * * Abstract class for utility classes that can load ML instances. * * @tparam T ML instance type */ -@Experimental @Since("1.6.0") abstract class MLReader[T] extends BaseReadWrite { @@ -202,13 +193,10 @@ abstract class MLReader[T] extends BaseReadWrite { } /** - * :: Experimental :: - * * Trait for objects that provide [[MLReader]]. * * @tparam T ML instance type */ -@Experimental @Since("1.6.0") trait MLReadable[T] { diff --git a/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAOptimizer.scala b/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAOptimizer.scala index 96b49bcc0aac14e3f3caea8cf9108dbf5932c06b..48bae4276c480e3d43362942f419e62387016722 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAOptimizer.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAOptimizer.scala @@ -38,7 +38,7 @@ import org.apache.spark.storage.StorageLevel */ @Since("1.4.0") @DeveloperApi -sealed trait LDAOptimizer { +trait LDAOptimizer { /* DEVELOPERS NOTE: diff --git a/python/pyspark/ml/classification.py b/python/pyspark/ml/classification.py index 8054a34db30f29d10131e73c86f29408bd006180..5fe4bab186bd2ac017170b43b910a2deab093799 100644 --- a/python/pyspark/ml/classification.py +++ b/python/pyspark/ml/classification.py @@ -1138,8 +1138,6 @@ class MultilayerPerceptronClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasMaxIter, HasTol, HasSeed, HasStepSize, JavaMLWritable, JavaMLReadable): """ - .. note:: Experimental - Classifier trainer based on the Multilayer Perceptron. Each layer has sigmoid activation function, output layer has softmax. Number of inputs has to be equal to the size of feature vectors. @@ -1311,8 +1309,6 @@ class MultilayerPerceptronClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, class MultilayerPerceptronClassificationModel(JavaModel, JavaPredictionModel, JavaMLWritable, JavaMLReadable): """ - .. note:: Experimental - Model fitted by MultilayerPerceptronClassifier. .. versionadded:: 1.6.0 diff --git a/python/pyspark/ml/clustering.py b/python/pyspark/ml/clustering.py index b29b5ac70e6fef46b01ac6ba82c35a5a5900459d..7f8d8455647685ee28f466a720ef090832a2ce6f 100644 --- a/python/pyspark/ml/clustering.py +++ b/python/pyspark/ml/clustering.py @@ -87,8 +87,6 @@ class ClusteringSummary(JavaWrapper): class GaussianMixtureModel(JavaModel, JavaMLWritable, JavaMLReadable): """ - .. note:: Experimental - Model fitted by GaussianMixture. .. versionadded:: 2.0.0 @@ -141,8 +139,6 @@ class GaussianMixtureModel(JavaModel, JavaMLWritable, JavaMLReadable): class GaussianMixture(JavaEstimator, HasFeaturesCol, HasPredictionCol, HasMaxIter, HasTol, HasSeed, HasProbabilityCol, JavaMLWritable, JavaMLReadable): """ - .. note:: Experimental - GaussianMixture clustering. This class performs expectation maximization for multivariate Gaussian Mixture Models (GMMs). A GMM represents a composite distribution of @@ -441,8 +437,6 @@ class KMeans(JavaEstimator, HasFeaturesCol, HasPredictionCol, HasMaxIter, HasTol class BisectingKMeansModel(JavaModel, JavaMLWritable, JavaMLReadable): """ - .. note:: Experimental - Model fitted by BisectingKMeans. .. versionadded:: 2.0.0 @@ -487,8 +481,6 @@ class BisectingKMeansModel(JavaModel, JavaMLWritable, JavaMLReadable): class BisectingKMeans(JavaEstimator, HasFeaturesCol, HasPredictionCol, HasMaxIter, HasSeed, JavaMLWritable, JavaMLReadable): """ - .. note:: Experimental - A bisecting k-means algorithm based on the paper "A comparison of document clustering techniques" by Steinbach, Karypis, and Kumar, with modification to fit Spark. The algorithm starts from a single cluster that contains all points. @@ -619,8 +611,6 @@ class BisectingKMeansSummary(ClusteringSummary): @inherit_doc class LDAModel(JavaModel): """ - .. note:: Experimental - Latent Dirichlet Allocation (LDA) model. This abstraction permits for different underlying representations, including local and distributed data structures. @@ -697,8 +687,6 @@ class LDAModel(JavaModel): @inherit_doc class DistributedLDAModel(LDAModel, JavaMLReadable, JavaMLWritable): """ - .. note:: Experimental - Distributed model fitted by :py:class:`LDA`. This type of model is currently only produced by Expectation-Maximization (EM). @@ -761,8 +749,6 @@ class DistributedLDAModel(LDAModel, JavaMLReadable, JavaMLWritable): @inherit_doc class LocalLDAModel(LDAModel, JavaMLReadable, JavaMLWritable): """ - .. note:: Experimental - Local (non-distributed) model fitted by :py:class:`LDA`. This model stores the inferred topics only; it does not store info about the training dataset. @@ -775,8 +761,6 @@ class LocalLDAModel(LDAModel, JavaMLReadable, JavaMLWritable): class LDA(JavaEstimator, HasFeaturesCol, HasMaxIter, HasSeed, HasCheckpointInterval, JavaMLReadable, JavaMLWritable): """ - .. note:: Experimental - Latent Dirichlet Allocation (LDA), a topic model designed for text documents. Terminology: diff --git a/python/pyspark/ml/feature.py b/python/pyspark/ml/feature.py index 40b63d4d31d4bbc2f13df72c0ec3432cd3faad23..aada38d1ad2ecae342b2eb2798378d6f70780032 100755 --- a/python/pyspark/ml/feature.py +++ b/python/pyspark/ml/feature.py @@ -654,8 +654,6 @@ class IDFModel(JavaModel, JavaMLReadable, JavaMLWritable): @inherit_doc class MaxAbsScaler(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ - .. note:: Experimental - Rescale each feature individually to range [-1, 1] by dividing through the largest maximum absolute value in each feature. It does not shift/center the data, and thus does not destroy any sparsity. @@ -715,8 +713,6 @@ class MaxAbsScaler(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, Jav class MaxAbsScalerModel(JavaModel, JavaMLReadable, JavaMLWritable): """ - .. note:: Experimental - Model fitted by :py:class:`MaxAbsScaler`. .. versionadded:: 2.0.0 diff --git a/python/pyspark/ml/util.py b/python/pyspark/ml/util.py index bec4b289521023e10553343e5d194c6c28ed2cde..c65b3d14be1dfb8a395bc0907fdd97ae316109ae 100644 --- a/python/pyspark/ml/util.py +++ b/python/pyspark/ml/util.py @@ -62,8 +62,6 @@ class Identifiable(object): @inherit_doc class MLWriter(object): """ - .. note:: Experimental - Utility class that can save ML instances. .. versionadded:: 2.0.0 @@ -129,8 +127,6 @@ class JavaMLWriter(MLWriter): @inherit_doc class MLWritable(object): """ - .. note:: Experimental - Mixin for ML instances that provide :py:class:`MLWriter`. .. versionadded:: 2.0.0 @@ -159,8 +155,6 @@ class JavaMLWritable(MLWritable): @inherit_doc class MLReader(object): """ - .. note:: Experimental - Utility class that can load ML instances. .. versionadded:: 2.0.0 @@ -242,8 +236,6 @@ class JavaMLReader(MLReader): @inherit_doc class MLReadable(object): """ - .. note:: Experimental - Mixin for instances that provide :py:class:`MLReader`. .. versionadded:: 2.0.0