diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/FrequentItems.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/FrequentItems.scala index 9329148aa233cd5b56c4370d4b5969cc7391f87f..db463029aedf7a516981e438d9e4bacc1c9fe73a 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/FrequentItems.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/FrequentItems.scala @@ -20,17 +20,15 @@ package org.apache.spark.sql.execution.stat import scala.collection.mutable.{Map => MutableMap} import org.apache.spark.Logging -import org.apache.spark.sql.catalyst.InternalRow import org.apache.spark.sql.catalyst.plans.logical.LocalRelation import org.apache.spark.sql.types._ -import org.apache.spark.sql.{Column, DataFrame} +import org.apache.spark.sql.{Row, Column, DataFrame} private[sql] object FrequentItems extends Logging { /** A helper class wrapping `MutableMap[Any, Long]` for simplicity. */ private class FreqItemCounter(size: Int) extends Serializable { val baseMap: MutableMap[Any, Long] = MutableMap.empty[Any, Long] - /** * Add a new example to the counts if it exists, otherwise deduct the count * from existing items. @@ -42,9 +40,15 @@ private[sql] object FrequentItems extends Logging { if (baseMap.size < size) { baseMap += key -> count } else { - // TODO: Make this more efficient... A flatMap? - baseMap.retain((k, v) => v > count) - baseMap.transform((k, v) => v - count) + val minCount = baseMap.values.min + val remainder = count - minCount + if (remainder >= 0) { + baseMap += key -> count // something will get kicked out, so we can add this + baseMap.retain((k, v) => v > minCount) + baseMap.transform((k, v) => v - minCount) + } else { + baseMap.transform((k, v) => v - count) + } } } this @@ -90,12 +94,12 @@ private[sql] object FrequentItems extends Logging { (name, originalSchema.fields(index).dataType) }.toArray - val freqItems = df.select(cols.map(Column(_)) : _*).queryExecution.toRdd.aggregate(countMaps)( + val freqItems = df.select(cols.map(Column(_)) : _*).rdd.aggregate(countMaps)( seqOp = (counts, row) => { var i = 0 while (i < numCols) { val thisMap = counts(i) - val key = row.get(i, colInfo(i)._2) + val key = row.get(i) thisMap.add(key, 1L) i += 1 } @@ -110,13 +114,13 @@ private[sql] object FrequentItems extends Logging { baseCounts } ) - val justItems = freqItems.map(m => m.baseMap.keys.toArray).map(new GenericArrayData(_)) - val resultRow = InternalRow(justItems : _*) + val justItems = freqItems.map(m => m.baseMap.keys.toArray) + val resultRow = Row(justItems : _*) // append frequent Items to the column name for easy debugging val outputCols = colInfo.map { v => StructField(v._1 + "_freqItems", ArrayType(v._2, false)) } val schema = StructType(outputCols).toAttributes - new DataFrame(df.sqlContext, LocalRelation(schema, Seq(resultRow))) + new DataFrame(df.sqlContext, LocalRelation.fromExternalRows(schema, Seq(resultRow))) } } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/DataFrameStatSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/DataFrameStatSuite.scala index 07a675e64f5279df4b61a90748ac7f851962f04e..0e7659f443ecd764619c9ff54ba9e5a481f46c9a 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/DataFrameStatSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/DataFrameStatSuite.scala @@ -123,12 +123,30 @@ class DataFrameStatSuite extends QueryTest { val results = df.stat.freqItems(Array("numbers", "letters"), 0.1) val items = results.collect().head - items.getSeq[Int](0) should contain (1) - items.getSeq[String](1) should contain (toLetter(1)) + assert(items.getSeq[Int](0).contains(1)) + assert(items.getSeq[String](1).contains(toLetter(1))) val singleColResults = df.stat.freqItems(Array("negDoubles"), 0.1) val items2 = singleColResults.collect().head - items2.getSeq[Double](0) should contain (-1.0) + assert(items2.getSeq[Double](0).contains(-1.0)) + } + + test("Frequent Items 2") { + val rows = sqlCtx.sparkContext.parallelize(Seq.empty[Int], 4) + // this is a regression test, where when merging partitions, we omitted values with higher + // counts than those that existed in the map when the map was full. This test should also fail + // if anything like SPARK-9614 is observed once again + val df = rows.mapPartitionsWithIndex { (idx, iter) => + if (idx == 3) { // must come from one of the later merges, therefore higher partition index + Iterator("3", "3", "3", "3", "3") + } else { + Iterator("0", "1", "2", "3", "4") + } + }.toDF("a") + val results = df.stat.freqItems(Array("a"), 0.25) + val items = results.collect().head.getSeq[String](0) + assert(items.contains("3")) + assert(items.length === 1) } test("sampleBy") {