diff --git a/examples/src/main/java/org/apache/spark/examples/JavaHdfsLR.java b/examples/src/main/java/org/apache/spark/examples/JavaHdfsLR.java
index 6c177de359b601588d8e3d7be4485463254320e0..31a79ddd3fff1d64d6f92c46cb269a5afad69d7c 100644
--- a/examples/src/main/java/org/apache/spark/examples/JavaHdfsLR.java
+++ b/examples/src/main/java/org/apache/spark/examples/JavaHdfsLR.java
@@ -30,12 +30,25 @@ import java.util.regex.Pattern;
 
 /**
  * Logistic regression based classification.
+ *
+ * This is an example implementation for learning how to use Spark. For more conventional use,
+ * please refer to either org.apache.spark.mllib.classification.LogisticRegressionWithSGD or
+ * org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS based on your needs.
  */
 public final class JavaHdfsLR {
 
   private static final int D = 10;   // Number of dimensions
   private static final Random rand = new Random(42);
 
+  static void showWarning() {
+    String warning = "WARN: This is a naive implementation of Logistic Regression " +
+            "and is given as an example!\n" +
+            "Please use either org.apache.spark.mllib.classification.LogisticRegressionWithSGD " +
+            "or org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS " +
+            "for more conventional use.";
+    System.err.println(warning);
+  }
+
   static class DataPoint implements Serializable {
     DataPoint(double[] x, double y) {
       this.x = x;
@@ -109,6 +122,8 @@ public final class JavaHdfsLR {
       System.exit(1);
     }
 
+    showWarning();
+
     SparkConf sparkConf = new SparkConf().setAppName("JavaHdfsLR");
     JavaSparkContext sc = new JavaSparkContext(sparkConf);
     JavaRDD<String> lines = sc.textFile(args[0]);
diff --git a/examples/src/main/java/org/apache/spark/examples/JavaPageRank.java b/examples/src/main/java/org/apache/spark/examples/JavaPageRank.java
index c22506491fbff25f5b1c7a563e4509a36c8643c2..a5db8accdf1389fc4a3524cb55992193b0936099 100644
--- a/examples/src/main/java/org/apache/spark/examples/JavaPageRank.java
+++ b/examples/src/main/java/org/apache/spark/examples/JavaPageRank.java
@@ -45,10 +45,21 @@ import java.util.regex.Pattern;
  * URL         neighbor URL
  * ...
  * where URL and their neighbors are separated by space(s).
+ *
+ * This is an example implementation for learning how to use Spark. For more conventional use,
+ * please refer to org.apache.spark.graphx.lib.PageRank
  */
 public final class JavaPageRank {
   private static final Pattern SPACES = Pattern.compile("\\s+");
 
+  static void showWarning() {
+    String warning = "WARN: This is a naive implementation of PageRank " +
+            "and is given as an example! \n" +
+            "Please use the PageRank implementation found in " +
+            "org.apache.spark.graphx.lib.PageRank for more conventional use.";
+    System.err.println(warning);
+  }
+
   private static class Sum implements Function2<Double, Double, Double> {
     @Override
     public Double call(Double a, Double b) {
@@ -62,6 +73,8 @@ public final class JavaPageRank {
       System.exit(1);
     }
 
+    showWarning();
+
     SparkConf sparkConf = new SparkConf().setAppName("JavaPageRank");
     JavaSparkContext ctx = new JavaSparkContext(sparkConf);
 
diff --git a/examples/src/main/python/pagerank.py b/examples/src/main/python/pagerank.py
index b539c4128cdcc704409a97972f360c9757c5b437..a5f25d78c11460ae7e665b4968bb20b6780521ab 100755
--- a/examples/src/main/python/pagerank.py
+++ b/examples/src/main/python/pagerank.py
@@ -15,6 +15,11 @@
 # limitations under the License.
 #
 
+"""
+This is an example implementation of PageRank. For more conventional use,
+Please refer to PageRank implementation provided by graphx
+"""
+
 import re
 import sys
 from operator import add
@@ -40,6 +45,9 @@ if __name__ == "__main__":
         print >> sys.stderr, "Usage: pagerank <file> <iterations>"
         exit(-1)
 
+    print >> sys.stderr,  """WARN: This is a naive implementation of PageRank and is
+          given as an example! Please refer to PageRank implementation provided by graphx"""
+
     # Initialize the spark context.
     sc = SparkContext(appName="PythonPageRank")
 
diff --git a/examples/src/main/scala/org/apache/spark/examples/LocalFileLR.scala b/examples/src/main/scala/org/apache/spark/examples/LocalFileLR.scala
index 931faac5463c48217c6dd0fbc058d526fa988f39..ac2ea35bbd0e02137ad0700f31a4c3d4d6ad383b 100644
--- a/examples/src/main/scala/org/apache/spark/examples/LocalFileLR.scala
+++ b/examples/src/main/scala/org/apache/spark/examples/LocalFileLR.scala
@@ -25,7 +25,8 @@ import breeze.linalg.{Vector, DenseVector}
  * Logistic regression based classification.
  *
  * This is an example implementation for learning how to use Spark. For more conventional use,
- * please refer to org.apache.spark.mllib.classification.LogisticRegression
+ * please refer to either org.apache.spark.mllib.classification.LogisticRegressionWithSGD or
+ * org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS based on your needs.
  */
 object LocalFileLR {
   val D = 10   // Numer of dimensions
@@ -41,7 +42,8 @@ object LocalFileLR {
   def showWarning() {
     System.err.println(
       """WARN: This is a naive implementation of Logistic Regression and is given as an example!
-        |Please use the LogisticRegression method found in org.apache.spark.mllib.classification
+        |Please use either org.apache.spark.mllib.classification.LogisticRegressionWithSGD or
+        |org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
         |for more conventional use.
       """.stripMargin)
   }
diff --git a/examples/src/main/scala/org/apache/spark/examples/LocalLR.scala b/examples/src/main/scala/org/apache/spark/examples/LocalLR.scala
index 2d75b9d2590f8b97f6e0f765264314898f229045..92a683ad57ea1f1abc54bc95c832ce18f739cb44 100644
--- a/examples/src/main/scala/org/apache/spark/examples/LocalLR.scala
+++ b/examples/src/main/scala/org/apache/spark/examples/LocalLR.scala
@@ -25,7 +25,8 @@ import breeze.linalg.{Vector, DenseVector}
  * Logistic regression based classification.
  *
  * This is an example implementation for learning how to use Spark. For more conventional use,
- * please refer to org.apache.spark.mllib.classification.LogisticRegression
+ * please refer to either org.apache.spark.mllib.classification.LogisticRegressionWithSGD or
+ * org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS based on your needs.
  */
 object LocalLR {
   val N = 10000  // Number of data points
@@ -48,7 +49,8 @@ object LocalLR {
   def showWarning() {
     System.err.println(
       """WARN: This is a naive implementation of Logistic Regression and is given as an example!
-        |Please use the LogisticRegression method found in org.apache.spark.mllib.classification
+        |Please use either org.apache.spark.mllib.classification.LogisticRegressionWithSGD or
+        |org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
         |for more conventional use.
       """.stripMargin)
   }
diff --git a/examples/src/main/scala/org/apache/spark/examples/SparkHdfsLR.scala b/examples/src/main/scala/org/apache/spark/examples/SparkHdfsLR.scala
index 3258510894372b3c45ec9b45f83b980405dd6ba4..9099c2fcc90b312054f89d713e3ee5daf587b8f4 100644
--- a/examples/src/main/scala/org/apache/spark/examples/SparkHdfsLR.scala
+++ b/examples/src/main/scala/org/apache/spark/examples/SparkHdfsLR.scala
@@ -32,7 +32,8 @@ import org.apache.spark.scheduler.InputFormatInfo
  * Logistic regression based classification.
  *
  * This is an example implementation for learning how to use Spark. For more conventional use,
- * please refer to org.apache.spark.mllib.classification.LogisticRegression
+ * please refer to either org.apache.spark.mllib.classification.LogisticRegressionWithSGD or
+ * org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS based on your needs.
  */
 object SparkHdfsLR {
   val D = 10   // Numer of dimensions
@@ -54,7 +55,8 @@ object SparkHdfsLR {
   def showWarning() {
     System.err.println(
       """WARN: This is a naive implementation of Logistic Regression and is given as an example!
-        |Please use the LogisticRegression method found in org.apache.spark.mllib.classification
+        |Please use either org.apache.spark.mllib.classification.LogisticRegressionWithSGD or
+        |org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
         |for more conventional use.
       """.stripMargin)
   }
diff --git a/examples/src/main/scala/org/apache/spark/examples/SparkLR.scala b/examples/src/main/scala/org/apache/spark/examples/SparkLR.scala
index fc23308fc4adfff0848136c3a70b23822312943b..257a7d29f922ad37ab781e18631ba59d71064efe 100644
--- a/examples/src/main/scala/org/apache/spark/examples/SparkLR.scala
+++ b/examples/src/main/scala/org/apache/spark/examples/SparkLR.scala
@@ -30,7 +30,8 @@ import org.apache.spark._
  * Usage: SparkLR [slices]
  *
  * This is an example implementation for learning how to use Spark. For more conventional use,
- * please refer to org.apache.spark.mllib.classification.LogisticRegression
+ * please refer to either org.apache.spark.mllib.classification.LogisticRegressionWithSGD or
+ * org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS based on your needs.
  */
 object SparkLR {
   val N = 10000  // Number of data points
@@ -53,7 +54,8 @@ object SparkLR {
   def showWarning() {
     System.err.println(
       """WARN: This is a naive implementation of Logistic Regression and is given as an example!
-        |Please use the LogisticRegression method found in org.apache.spark.mllib.classification
+        |Please use either org.apache.spark.mllib.classification.LogisticRegressionWithSGD or
+        |org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
         |for more conventional use.
       """.stripMargin)
   }
diff --git a/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala b/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala
index 4c7e006da0618ccfd5e28a137da67a5b0fc4ff6a..8d092b6506d33aa74e4a17d8188ea8b64485cadf 100644
--- a/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala
+++ b/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala
@@ -28,13 +28,28 @@ import org.apache.spark.{SparkConf, SparkContext}
  * URL         neighbor URL
  * ...
  * where URL and their neighbors are separated by space(s).
+ *
+ * This is an example implementation for learning how to use Spark. For more conventional use,
+ * please refer to org.apache.spark.graphx.lib.PageRank
  */
 object SparkPageRank {
+
+  def showWarning() {
+    System.err.println(
+      """WARN: This is a naive implementation of PageRank and is given as an example!
+        |Please use the PageRank implementation found in org.apache.spark.graphx.lib.PageRank
+        |for more conventional use.
+      """.stripMargin)
+  }
+
   def main(args: Array[String]) {
     if (args.length < 1) {
       System.err.println("Usage: SparkPageRank <file> <iter>")
       System.exit(1)
     }
+
+    showWarning()
+
     val sparkConf = new SparkConf().setAppName("PageRank")
     val iters = if (args.length > 0) args(1).toInt else 10
     val ctx = new SparkContext(sparkConf)
diff --git a/examples/src/main/scala/org/apache/spark/examples/SparkTachyonHdfsLR.scala b/examples/src/main/scala/org/apache/spark/examples/SparkTachyonHdfsLR.scala
index 96d13612e46dd084bfa3592180b163f94f1d80de..4393b99e636b6d69251fc7f5c4b38d2acef97e9c 100644
--- a/examples/src/main/scala/org/apache/spark/examples/SparkTachyonHdfsLR.scala
+++ b/examples/src/main/scala/org/apache/spark/examples/SparkTachyonHdfsLR.scala
@@ -32,11 +32,24 @@ import org.apache.spark.storage.StorageLevel
 /**
  * Logistic regression based classification.
  * This example uses Tachyon to persist rdds during computation.
+ *
+ * This is an example implementation for learning how to use Spark. For more conventional use,
+ * please refer to either org.apache.spark.mllib.classification.LogisticRegressionWithSGD or
+ * org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS based on your needs.
  */
 object SparkTachyonHdfsLR {
   val D = 10   // Numer of dimensions
   val rand = new Random(42)
 
+  def showWarning() {
+    System.err.println(
+      """WARN: This is a naive implementation of Logistic Regression and is given as an example!
+        |Please use either org.apache.spark.mllib.classification.LogisticRegressionWithSGD or
+        |org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
+        |for more conventional use.
+      """.stripMargin)
+  }
+
   case class DataPoint(x: Vector[Double], y: Double)
 
   def parsePoint(line: String): DataPoint = {
@@ -51,6 +64,9 @@ object SparkTachyonHdfsLR {
   }
 
   def main(args: Array[String]) {
+
+    showWarning()
+
     val inputPath = args(0)
     val sparkConf = new SparkConf().setAppName("SparkTachyonHdfsLR")
     val conf = new Configuration()