diff --git a/graph/src/main/scala/org/apache/spark/graph/Analytics.scala b/graph/src/main/scala/org/apache/spark/graph/Analytics.scala
index acb9e3753f8e29194551c1b32f7c9d69683d3af4..ddbd5becceb05f756e65d71d4401f0bc3dad13c1 100644
--- a/graph/src/main/scala/org/apache/spark/graph/Analytics.scala
+++ b/graph/src/main/scala/org/apache/spark/graph/Analytics.scala
@@ -26,7 +26,7 @@ object Analytics extends Logging {
    * for( iter <- 0 until numIter ) {
    *   swap(oldPR, PR)
    *   for( i <- 0 until n ) {
-   *     PR[i] = alpha + (1 - \alpha) * inNbrs[i].map(j => oldPR[j] / outDeg[j]).sum
+   *     PR[i] = alpha + (1 - alpha) * inNbrs[i].map(j => oldPR[j] / outDeg[j]).sum
    *   }
    * }
    * }}}
@@ -193,18 +193,6 @@ object Analytics extends Logging {
       sendMessage, 
       (a,b) => math.min(a,b)
       )
-
-    /**
-     * Originally this was implemented using the GraphLab abstraction but with
-     * support for message computation along all edge directions the pregel
-     * abstraction is sufficient 
-     */
-    // GraphLab(ccGraph, gatherDirection = EdgeDirection.Both, scatterDirection = EdgeDirection.Both)(
-    //   (me_id, edge) => edge.otherVertexAttr(me_id), // gather
-    //   (a: Vid, b: Vid) => math.min(a, b), // merge
-    //   (id, data, a: Option[Vid]) => math.min(data, a.getOrElse(Long.MaxValue)), // apply
-    //   (me_id, edge) => (edge.vertexAttr(me_id) < edge.otherVertexAttr(me_id))
-    // )
   } // end of connectedComponents 
 
   
diff --git a/graph/src/main/scala/org/apache/spark/graph/Pregel.scala b/graph/src/main/scala/org/apache/spark/graph/Pregel.scala
index d45e351d6af5d81967f449373f8239168f70ea57..729eaa7eaef907ada1b288e2ce15f3154b4a8426 100644
--- a/graph/src/main/scala/org/apache/spark/graph/Pregel.scala
+++ b/graph/src/main/scala/org/apache/spark/graph/Pregel.scala
@@ -8,7 +8,7 @@ import org.apache.spark.rdd.RDD
  * message-passing API.  However, unlike the original Pregel API
  * the GraphX pregel API factors the sendMessage computation over
  * edges, enables the message sending computation to read both
- * vertex attributes, and finally contrains messages to the graph
+ * vertex attributes, and finally constrains messages to the graph
  * structure.  These changes allow for substantially more efficient
  * distributed execution while also exposing greater flexibility
  * for graph based computation.