diff --git a/core/src/main/scala/org/apache/spark/rdd/RDD.scala b/core/src/main/scala/org/apache/spark/rdd/RDD.scala index 8bf4489e1aca718025477b62d7bbc08fc9ba7c88..8782fcda162c7ded94835f50ed775406ecab46ec 100644 --- a/core/src/main/scala/org/apache/spark/rdd/RDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/RDD.scala @@ -722,7 +722,7 @@ abstract class RDD[T: ClassTag]( * An example of pipe the RDD data of groupBy() in a streaming way, * instead of constructing a huge String to concat all the elements: * def printRDDElement(record:(String, Seq[String]), f:String=>Unit) = - * for (e <- record._2){f(e)} + * for (e <- record._2) {f(e)} * @param separateWorkingDir Use separate working directories for each task. * @return the result RDD */ diff --git a/core/src/main/scala/org/apache/spark/rpc/RpcTimeout.scala b/core/src/main/scala/org/apache/spark/rpc/RpcTimeout.scala index 8b4ebf34ba83c50e3b9f259e30ae51c1a6133021..2950df62bf285c702f34be59b8d3d8d6d0240a46 100644 --- a/core/src/main/scala/org/apache/spark/rpc/RpcTimeout.scala +++ b/core/src/main/scala/org/apache/spark/rpc/RpcTimeout.scala @@ -119,7 +119,7 @@ private[spark] object RpcTimeout { // Find the first set property or use the default value with the first property val itr = timeoutPropList.iterator var foundProp: Option[(String, String)] = None - while (itr.hasNext && foundProp.isEmpty){ + while (itr.hasNext && foundProp.isEmpty) { val propKey = itr.next() conf.getOption(propKey).foreach { prop => foundProp = Some(propKey, prop) } } diff --git a/core/src/main/scala/org/apache/spark/scheduler/InputFormatInfo.scala b/core/src/main/scala/org/apache/spark/scheduler/InputFormatInfo.scala index 8235b1024537658a7782ed0c2868eb581472e25e..def0aac720b64a5c5f18606bd2a996f28a2be1f6 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/InputFormatInfo.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/InputFormatInfo.scala @@ -173,7 +173,7 @@ object InputFormatInfo { for (inputSplit <- formats) { val splits = inputSplit.findPreferredLocations() - for (split <- splits){ + for (split <- splits) { val location = split.hostLocation val set = nodeToSplit.getOrElseUpdate(location, new HashSet[SplitInfo]) set += split diff --git a/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala b/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala index 8b2f4973efe2279ef979d49a7ddba8c4424738fc..36df032c25141ff89d0390541146803686871a47 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala @@ -623,7 +623,7 @@ private[spark] object TaskSchedulerImpl { val containerList: ArrayBuffer[T] = map.getOrElse(key, null) assert(containerList != null) // Get the index'th entry for this host - if present - if (index < containerList.size){ + if (index < containerList.size) { retval += containerList.apply(index) found = true } diff --git a/core/src/main/scala/org/apache/spark/status/api/v1/OneStageResource.scala b/core/src/main/scala/org/apache/spark/status/api/v1/OneStageResource.scala index f9812f06cf527148c030a85879e4319eddfbc33d..3e6d2942d0fbb1d64c683e808a55a08ef2cf31e8 100644 --- a/core/src/main/scala/org/apache/spark/status/api/v1/OneStageResource.scala +++ b/core/src/main/scala/org/apache/spark/status/api/v1/OneStageResource.scala @@ -33,7 +33,7 @@ private[v1] class OneStageResource(ui: SparkUI) { @GET @Path("") def stageData(@PathParam("stageId") stageId: Int): Seq[StageData] = { - withStage(stageId){ stageAttempts => + withStage(stageId) { stageAttempts => stageAttempts.map { stage => AllStagesResource.stageUiToStageData(stage.status, stage.info, stage.ui, includeDetails = true) diff --git a/core/src/main/scala/org/apache/spark/storage/BlockManagerId.scala b/core/src/main/scala/org/apache/spark/storage/BlockManagerId.scala index 69ac37511e730d1648ee44ae9afa1abfdffaf2a9..cae7c9ed952f12e3ebb9ed24ac5af75134e096b0 100644 --- a/core/src/main/scala/org/apache/spark/storage/BlockManagerId.scala +++ b/core/src/main/scala/org/apache/spark/storage/BlockManagerId.scala @@ -44,7 +44,7 @@ class BlockManagerId private ( def executorId: String = executorId_ - if (null != host_){ + if (null != host_) { Utils.checkHost(host_, "Expected hostname") assert (port_ > 0) } diff --git a/core/src/test/scala/org/apache/spark/AccumulatorSuite.scala b/core/src/test/scala/org/apache/spark/AccumulatorSuite.scala index 4ff8ae57ab3c099a258e12de3090a1c61c1fb782..61ab24051e6007d9b75370d645a9ac37023013a6 100644 --- a/core/src/test/scala/org/apache/spark/AccumulatorSuite.scala +++ b/core/src/test/scala/org/apache/spark/AccumulatorSuite.scala @@ -57,7 +57,7 @@ class AccumulatorSuite extends SparkFunSuite with Matchers with LocalSparkContex } } - test ("basic accumulation"){ + test ("basic accumulation") { sc = new SparkContext("local", "test") val acc : Accumulator[Int] = sc.accumulator(0) diff --git a/core/src/test/scala/org/apache/spark/ImplicitOrderingSuite.scala b/core/src/test/scala/org/apache/spark/ImplicitOrderingSuite.scala index 4399f25626472d6d88e91c2d78c0a9a26927503c..939f12f94f5c3642c10894d91610fde70bd76af1 100644 --- a/core/src/test/scala/org/apache/spark/ImplicitOrderingSuite.scala +++ b/core/src/test/scala/org/apache/spark/ImplicitOrderingSuite.scala @@ -21,7 +21,7 @@ import org.apache.spark.rdd.RDD class ImplicitOrderingSuite extends SparkFunSuite with LocalSparkContext { // Tests that PairRDDFunctions grabs an implicit Ordering in various cases where it should. - test("basic inference of Orderings"){ + test("basic inference of Orderings") { sc = new SparkContext("local", "test") val rdd = sc.parallelize(1 to 10) diff --git a/core/src/test/scala/org/apache/spark/deploy/history/ApplicationCacheSuite.scala b/core/src/test/scala/org/apache/spark/deploy/history/ApplicationCacheSuite.scala index de6680c61006d11aa3f5688c6c4a14d28d4c8d59..e24188781f7cd28329594890a5e34e9e5dca5940 100644 --- a/core/src/test/scala/org/apache/spark/deploy/history/ApplicationCacheSuite.scala +++ b/core/src/test/scala/org/apache/spark/deploy/history/ApplicationCacheSuite.scala @@ -476,7 +476,7 @@ class ApplicationCacheSuite extends SparkFunSuite with Logging with MockitoSugar when(request.getRequestURI()).thenReturn("http://localhost:18080/history/local-123/jobs/job/") when(request.getQueryString()).thenReturn("id=2") val resp = mock[HttpServletResponse] - when(resp.encodeRedirectURL(any())).thenAnswer(new Answer[String](){ + when(resp.encodeRedirectURL(any())).thenAnswer(new Answer[String]() { override def answer(invocationOnMock: InvocationOnMock): String = { invocationOnMock.getArguments()(0).asInstanceOf[String] } diff --git a/examples/src/main/scala/org/apache/spark/examples/LocalFileLR.scala b/examples/src/main/scala/org/apache/spark/examples/LocalFileLR.scala index f2e4c96fa56c53e5ac68a8fb37fedb02b0c8ac29..bec89f7c3dff01e5ff87b519cc585b8e56a96bd1 100644 --- a/examples/src/main/scala/org/apache/spark/examples/LocalFileLR.scala +++ b/examples/src/main/scala/org/apache/spark/examples/LocalFileLR.scala @@ -58,7 +58,7 @@ object LocalFileLR { val ITERATIONS = args(1).toInt // Initialize w to a random value - var w = DenseVector.fill(D){2 * rand.nextDouble - 1} + var w = DenseVector.fill(D) {2 * rand.nextDouble - 1} println("Initial w: " + w) for (i <- 1 to ITERATIONS) { diff --git a/examples/src/main/scala/org/apache/spark/examples/LocalKMeans.scala b/examples/src/main/scala/org/apache/spark/examples/LocalKMeans.scala index 19bebffcb0272ba631e02afd185bf61efd125a13..f8961847f3df20d307eda58041a1c763ebb28a35 100644 --- a/examples/src/main/scala/org/apache/spark/examples/LocalKMeans.scala +++ b/examples/src/main/scala/org/apache/spark/examples/LocalKMeans.scala @@ -41,7 +41,7 @@ object LocalKMeans { def generateData: Array[DenseVector[Double]] = { def generatePoint(i: Int): DenseVector[Double] = { - DenseVector.fill(D){rand.nextDouble * R} + DenseVector.fill(D) {rand.nextDouble * R} } Array.tabulate(N)(generatePoint) } diff --git a/examples/src/main/scala/org/apache/spark/examples/LocalLR.scala b/examples/src/main/scala/org/apache/spark/examples/LocalLR.scala index 58adbabe4454d3d3b4767c34a06ad99fa04c5220..0baf6db607ad9db5b7ef4ab214b5c11f767af95d 100644 --- a/examples/src/main/scala/org/apache/spark/examples/LocalLR.scala +++ b/examples/src/main/scala/org/apache/spark/examples/LocalLR.scala @@ -41,7 +41,7 @@ object LocalLR { def generateData: Array[DataPoint] = { def generatePoint(i: Int): DataPoint = { val y = if (i % 2 == 0) -1 else 1 - val x = DenseVector.fill(D){rand.nextGaussian + y * R} + val x = DenseVector.fill(D) {rand.nextGaussian + y * R} DataPoint(x, y) } Array.tabulate(N)(generatePoint) @@ -62,7 +62,7 @@ object LocalLR { val data = generateData // Initialize w to a random value - var w = DenseVector.fill(D){2 * rand.nextDouble - 1} + var w = DenseVector.fill(D) {2 * rand.nextDouble - 1} println("Initial w: " + w) for (i <- 1 to ITERATIONS) { diff --git a/examples/src/main/scala/org/apache/spark/examples/SparkHdfsLR.scala b/examples/src/main/scala/org/apache/spark/examples/SparkHdfsLR.scala index f7eb9e99367a4f77281e9955b63f242b61683989..7463b868ff19b0e759a41e09d1fc7171cce0d0bf 100644 --- a/examples/src/main/scala/org/apache/spark/examples/SparkHdfsLR.scala +++ b/examples/src/main/scala/org/apache/spark/examples/SparkHdfsLR.scala @@ -78,7 +78,7 @@ object SparkHdfsLR { val ITERATIONS = args(1).toInt // Initialize w to a random value - var w = DenseVector.fill(D){2 * rand.nextDouble - 1} + var w = DenseVector.fill(D) {2 * rand.nextDouble - 1} println("Initial w: " + w) for (i <- 1 to ITERATIONS) { diff --git a/examples/src/main/scala/org/apache/spark/examples/SparkLR.scala b/examples/src/main/scala/org/apache/spark/examples/SparkLR.scala index 036e3d24c985f3b585ed42844ead8b24d2fe1ee4..acd8656b65a69e4b9a16c0aee1d66272e09ab9a9 100644 --- a/examples/src/main/scala/org/apache/spark/examples/SparkLR.scala +++ b/examples/src/main/scala/org/apache/spark/examples/SparkLR.scala @@ -46,7 +46,7 @@ object SparkLR { def generateData: Array[DataPoint] = { def generatePoint(i: Int): DataPoint = { val y = if (i % 2 == 0) -1 else 1 - val x = DenseVector.fill(D){rand.nextGaussian + y * R} + val x = DenseVector.fill(D) {rand.nextGaussian + y * R} DataPoint(x, y) } Array.tabulate(N)(generatePoint) @@ -71,7 +71,7 @@ object SparkLR { val points = sc.parallelize(generateData, numSlices).cache() // Initialize w to a random value - var w = DenseVector.fill(D){2 * rand.nextDouble - 1} + var w = DenseVector.fill(D) {2 * rand.nextDouble - 1} println("Initial w: " + w) for (i <- 1 to ITERATIONS) { diff --git a/examples/src/main/scala/org/apache/spark/examples/streaming/ActorWordCount.scala b/examples/src/main/scala/org/apache/spark/examples/streaming/ActorWordCount.scala index 2770b8af1c0ca29ea62fe9391f084730887e1c32..844772a289284628e9eda80a515d62f2f0b1b575 100644 --- a/examples/src/main/scala/org/apache/spark/examples/streaming/ActorWordCount.scala +++ b/examples/src/main/scala/org/apache/spark/examples/streaming/ActorWordCount.scala @@ -100,7 +100,7 @@ class SampleActorReceiver[T](urlOfPublisher: String) extends ActorReceiver { object FeederActor { def main(args: Array[String]) { - if (args.length < 2){ + if (args.length < 2) { System.err.println("Usage: FeederActor <hostname> <port>\n") System.exit(1) } diff --git a/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala b/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala index d02806a6ea227f29297aa2f266f488c9d318a50e..f21b623e93253684138481204d6f6f1e4751bcab 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala @@ -213,8 +213,8 @@ private[ann] object AffineLayerModel { */ def randomWeights(numIn: Int, numOut: Int, seed: Long = 11L): (BDM[Double], BDV[Double]) = { val rand: XORShiftRandom = new XORShiftRandom(seed) - val weights = BDM.fill[Double](numOut, numIn){ (rand.nextDouble * 4.8 - 2.4) / numIn } - val bias = BDV.fill[Double](numOut){ (rand.nextDouble * 4.8 - 2.4) / numIn } + val weights = BDM.fill[Double](numOut, numIn) { (rand.nextDouble * 4.8 - 2.4) / numIn } + val bias = BDV.fill[Double](numOut) { (rand.nextDouble * 4.8 - 2.4) / numIn } (weights, bias) } } @@ -529,7 +529,7 @@ private[ml] object FeedForwardTopology { */ def multiLayerPerceptron(layerSizes: Array[Int], softmax: Boolean = true): FeedForwardTopology = { val layers = new Array[Layer]((layerSizes.length - 1) * 2) - for(i <- 0 until layerSizes.length - 1){ + for(i <- 0 until layerSizes.length - 1) { layers(i * 2) = new AffineLayer(layerSizes(i), layerSizes(i + 1)) layers(i * 2 + 1) = if (softmax && i == layerSizes.length - 2) { @@ -655,7 +655,7 @@ private[ann] object FeedForwardModel { val layers = topology.layers val layerModels = new Array[LayerModel](layers.length) var offset = 0 - for(i <- 0 until layers.length){ + for(i <- 0 until layers.length) { layerModels(i) = layers(i).getInstance(seed) offset += layerModels(i).size } diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/NaiveBayes.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/NaiveBayes.scala index 718f49d3aedcd098d0c11913a7baacaab72ea699..483ef0d88ca64f04ee91847ab888d108cbffcf85 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/classification/NaiveBayes.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/classification/NaiveBayes.scala @@ -145,7 +145,7 @@ class NaiveBayesModel private[ml] ( case Multinomial => (None, None) case Bernoulli => val negTheta = theta.map(value => math.log(1.0 - math.exp(value))) - val ones = new DenseVector(Array.fill(theta.numCols){1.0}) + val ones = new DenseVector(Array.fill(theta.numCols) {1.0}) val thetaMinusNegTheta = theta.map { value => value - math.log(1.0 - math.exp(value)) } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala b/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala index 886cd60687779d27c14affa498396486409efd27..132dc174a894e4ec213228d353639243caf33e1b 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala @@ -428,7 +428,7 @@ private[python] class PythonMLLibAPI extends Serializable { val weight = wt.toArray val mean = mu.map(_.asInstanceOf[DenseVector]) val sigma = si.map(_.asInstanceOf[DenseMatrix]) - val gaussians = Array.tabulate(weight.length){ + val gaussians = Array.tabulate(weight.length) { i => new MultivariateGaussian(mean(i), sigma(i)) } val model = new GaussianMixtureModel(weight, gaussians) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/classification/NaiveBayes.scala b/mllib/src/main/scala/org/apache/spark/mllib/classification/NaiveBayes.scala index aef9ef2cb052d8a68b805ab48b5713d18b029064..9026b97f1cbef95e16475e644e409fbf43060eb3 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/classification/NaiveBayes.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/classification/NaiveBayes.scala @@ -74,7 +74,7 @@ class NaiveBayesModel private[spark] ( case Multinomial => (None, None) case Bernoulli => val negTheta = thetaMatrix.map(value => math.log(1.0 - math.exp(value))) - val ones = new DenseVector(Array.fill(thetaMatrix.numCols){1.0}) + val ones = new DenseVector(Array.fill(thetaMatrix.numCols) {1.0}) val thetaMinusNegTheta = thetaMatrix.map { value => value - math.log(1.0 - math.exp(value)) } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/evaluation/MultilabelMetrics.scala b/mllib/src/main/scala/org/apache/spark/mllib/evaluation/MultilabelMetrics.scala index 6dd541e5c070c8a59654f163d29444b3fceda4a3..77bd0aa30dda1accc2e01116736248fd05f9b12b 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/evaluation/MultilabelMetrics.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/evaluation/MultilabelMetrics.scala @@ -152,7 +152,7 @@ class MultilabelMetrics @Since("1.2.0") (predictionAndLabels: RDD[(Array[Double] */ @Since("1.2.0") lazy val microPrecision: Double = { - val sumFp = fpPerClass.foldLeft(0L){ case(cum, (_, fp)) => cum + fp} + val sumFp = fpPerClass.foldLeft(0L) { case(cum, (_, fp)) => cum + fp} sumTp.toDouble / (sumTp + sumFp) } @@ -162,7 +162,7 @@ class MultilabelMetrics @Since("1.2.0") (predictionAndLabels: RDD[(Array[Double] */ @Since("1.2.0") lazy val microRecall: Double = { - val sumFn = fnPerClass.foldLeft(0.0){ case(cum, (_, fn)) => cum + fn} + val sumFn = fnPerClass.foldLeft(0.0) { case(cum, (_, fn)) => cum + fn} sumTp.toDouble / (sumTp + sumFn) } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/BLAS.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/BLAS.scala index d2687dc11bc9eb429d68d4f923fc2c6043380907..27a73805678db5d9516c98e2cee407740b70a602 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/BLAS.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/BLAS.scala @@ -420,7 +420,7 @@ private[spark] object BLAS extends Serializable with Logging { val AcolPtrs = A.colPtrs // Slicing is easy in this case. This is the optimal multiplication setting for sparse matrices - if (A.isTransposed){ + if (A.isTransposed) { var colCounterForB = 0 if (!B.isTransposed) { // Expensive to put the check inside the loop while (colCounterForB < nB) { diff --git a/mllib/src/main/scala/org/apache/spark/mllib/regression/IsotonicRegression.scala b/mllib/src/main/scala/org/apache/spark/mllib/regression/IsotonicRegression.scala index f235089873ab855cf18a1e1e4354ae15a77b856a..abdd7981970fae54c5bab1360ecd300135ae66d2 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/regression/IsotonicRegression.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/regression/IsotonicRegression.scala @@ -136,7 +136,7 @@ class IsotonicRegressionModel @Since("1.3.0") ( // higher than all values, in between two values or exact match. if (insertIndex == 0) { predictions.head - } else if (insertIndex == boundaries.length){ + } else if (insertIndex == boundaries.length) { predictions.last } else if (foundIndex < 0) { linearInterpolation( diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/NumericParser.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/NumericParser.scala index a841c5caf014248316d03f0bbf791a6b7d320648..2c613348c2d9225458eef71ce2756c89217d57b8 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/util/NumericParser.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/util/NumericParser.scala @@ -98,7 +98,7 @@ private[mllib] object NumericParser { } } else if (token == ")") { parsing = false - } else if (token.trim.isEmpty){ + } else if (token.trim.isEmpty) { // ignore whitespaces between delim chars, e.g. ", [" } else { // expecting a number diff --git a/mllib/src/test/scala/org/apache/spark/ml/classification/RandomForestClassifierSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/classification/RandomForestClassifierSuite.scala index 6b810ab9eaa179122fa812b0826913ab3a2ee885..4c7c56782c35d4ddee2b17d8d8283cf1218d1509 100644 --- a/mllib/src/test/scala/org/apache/spark/ml/classification/RandomForestClassifierSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/ml/classification/RandomForestClassifierSuite.scala @@ -105,7 +105,7 @@ class RandomForestClassifierSuite extends SparkFunSuite with MLlibTestSparkConte compareAPIs(rdd, rf, categoricalFeatures, numClasses) } - test("subsampling rate in RandomForest"){ + test("subsampling rate in RandomForest") { val rdd = orderedLabeledPoints5_20 val categoricalFeatures = Map.empty[Int, Int] val numClasses = 2 diff --git a/mllib/src/test/scala/org/apache/spark/mllib/clustering/GaussianMixtureSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/clustering/GaussianMixtureSuite.scala index fb3bd3f412f817f69215a9471c3748d13c3928ee..67e680be73303947b45d4daf00cd8adcafffaced 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/clustering/GaussianMixtureSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/clustering/GaussianMixtureSuite.scala @@ -182,7 +182,7 @@ class GaussianMixtureSuite extends SparkFunSuite with MLlibTestSparkContext { Vectors.dense( 4.5605), Vectors.dense( 5.2043), Vectors.dense( 6.2734) ) - val data2: Array[Vector] = Array.tabulate(25){ i: Int => + val data2: Array[Vector] = Array.tabulate(25) { i: Int => Vectors.dense(Array.tabulate(50)(i + _.toDouble)) } diff --git a/mllib/src/test/scala/org/apache/spark/mllib/tree/RandomForestSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/tree/RandomForestSuite.scala index e6df5d974bf36d4cd2d79b110a3154884cd61d13..c72fc9bb4f5d0f0f2dc24e856765bf51e041a9b6 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/tree/RandomForestSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/tree/RandomForestSuite.scala @@ -197,7 +197,7 @@ class RandomForestSuite extends SparkFunSuite with MLlibTestSparkContext { featureSubsetStrategy = "sqrt", seed = 12345) } - test("subsampling rate in RandomForest"){ + test("subsampling rate in RandomForest") { val arr = EnsembleTestHelper.generateOrderedLabeledPoints(5, 20) val rdd = sc.parallelize(arr) val strategy = new Strategy(algo = Classification, impurity = Gini, maxDepth = 2, diff --git a/repl/scala-2.10/src/main/scala/org/apache/spark/repl/SparkILoop.scala b/repl/scala-2.10/src/main/scala/org/apache/spark/repl/SparkILoop.scala index 22749c4609345a8c57a39199158515f6c76b6337..2a8fa45e3c615b60f776491144250e33d7e2557f 100644 --- a/repl/scala-2.10/src/main/scala/org/apache/spark/repl/SparkILoop.scala +++ b/repl/scala-2.10/src/main/scala/org/apache/spark/repl/SparkILoop.scala @@ -169,7 +169,7 @@ class SparkILoop( } - private def sparkCleanUp(){ + private def sparkCleanUp() { echo("Stopping spark context.") intp.beQuietDuring { command("sc.stop()") diff --git a/scalastyle-config.xml b/scalastyle-config.xml index 64619d21089993b0e64fad4442a863c3abcec790..37d2ecf48ec0234812dd868ce023129c3192a768 100644 --- a/scalastyle-config.xml +++ b/scalastyle-config.xml @@ -215,6 +215,14 @@ This file is divided into 3 sections: </parameters> </check> + <!-- SPARK-3854: Single Space between ')' and '{' --> + <check customId="SingleSpaceBetweenRParenAndLCurlyBrace" level="error" class="org.scalastyle.file.RegexChecker" enabled="true"> + <parameters><parameter name="regex">\)\{</parameter></parameters> + <customMessage><![CDATA[ + Single Space between ')' and `{`. + ]]></customMessage> + </check> + <!-- ================================================================================ --> <!-- rules we'd like to enforce, but haven't cleaned up the codebase yet --> <!-- ================================================================================ --> diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/complexTypeCreator.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/complexTypeCreator.scala index 87e43429e6587f5fc90bead9abf7eb796e0d1b57..efd75295b2ef15a0394c39276158b02b97f9616a 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/complexTypeCreator.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/complexTypeCreator.scala @@ -159,7 +159,7 @@ case class CreateNamedStruct(children: Seq[Expression]) extends Expression { TypeCheckResult.TypeCheckFailure( s"Only foldable StringType expressions are allowed to appear at odd position , got :" + s" ${invalidNames.mkString(",")}") - } else if (!names.contains(null)){ + } else if (!names.contains(null)) { TypeCheckResult.TypeCheckSuccess } else { TypeCheckResult.TypeCheckFailure("Field name should not be null") diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/mathExpressions.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/mathExpressions.scala index bc2df0fb4adf2486716c567ee7ac20fe9ac3f5ea..12fcc40376e10cd4a9ed36833ef8b8947f080097 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/mathExpressions.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/mathExpressions.scala @@ -806,14 +806,14 @@ case class Round(child: Expression, scale: Expression) case FloatType => // if child eval to NaN or Infinity, just return it. if (_scale == 0) { s""" - if (Float.isNaN(${ce.value}) || Float.isInfinite(${ce.value})){ + if (Float.isNaN(${ce.value}) || Float.isInfinite(${ce.value})) { ${ev.value} = ${ce.value}; } else { ${ev.value} = Math.round(${ce.value}); }""" } else { s""" - if (Float.isNaN(${ce.value}) || Float.isInfinite(${ce.value})){ + if (Float.isNaN(${ce.value}) || Float.isInfinite(${ce.value})) { ${ev.value} = ${ce.value}; } else { ${ev.value} = java.math.BigDecimal.valueOf(${ce.value}). @@ -823,14 +823,14 @@ case class Round(child: Expression, scale: Expression) case DoubleType => // if child eval to NaN or Infinity, just return it. if (_scale == 0) { s""" - if (Double.isNaN(${ce.value}) || Double.isInfinite(${ce.value})){ + if (Double.isNaN(${ce.value}) || Double.isInfinite(${ce.value})) { ${ev.value} = ${ce.value}; } else { ${ev.value} = Math.round(${ce.value}); }""" } else { s""" - if (Double.isNaN(${ce.value}) || Double.isInfinite(${ce.value})){ + if (Double.isNaN(${ce.value}) || Double.isInfinite(${ce.value})) { ${ev.value} = ${ce.value}; } else { ${ev.value} = java.math.BigDecimal.valueOf(${ce.value}). diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/RowTest.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/RowTest.scala index 1e7118144f2ec064d7b9c525fda651b1453d5308..d9577dea1be36f1dd709dfb3a054a8f636057d84 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/RowTest.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/RowTest.scala @@ -86,7 +86,7 @@ class RowTest extends FunSpec with Matchers { } } - it("getAs() on type extending AnyVal does not throw exception when value is null"){ + it("getAs() on type extending AnyVal does not throw exception when value is null") { sampleRowWithoutCol3.getAs[String](sampleRowWithoutCol3.fieldIndex("col1")) shouldBe null } } diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/FilterPushdownSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/FilterPushdownSuite.scala index 97a0cde381233886df8583b87dc791d6fbbdb62e..a636d6301245464889b1d442c0d40ded386bdd8d 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/FilterPushdownSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/FilterPushdownSuite.scala @@ -535,7 +535,7 @@ class FilterPushdownSuite extends PlanTest { // Filter("c" > 6) assertResult(classOf[Filter])(optimized.getClass) assertResult(1)(optimized.asInstanceOf[Filter].condition.references.size) - assertResult("c"){ + assertResult("c") { optimized.asInstanceOf[Filter].condition.references.toSeq(0).name } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala index 339e61e5723baa722e7757c27529f6acfa7ffcaf..24f61992d496b991854706a326274e25ded56e30 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala @@ -1147,7 +1147,7 @@ class DataFrame private[sql]( * columns of the input row are implicitly joined with each value that is output by the function. * * {{{ - * df.explode("words", "word"){words: String => words.split(" ")} + * df.explode("words", "word") {words: String => words.split(" ")} * }}} * @group dfops * @since 1.3.0 diff --git a/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala b/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala index dd1fbcf3c881a2233d28345c337fa91c375c4533..daddf6e0c57e7545ba49e4d759afca195a734bf5 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala @@ -605,7 +605,7 @@ class Dataset[T] private[sql]( * duplicate items. As such, it is analogous to `UNION ALL` in SQL. * @since 1.6.0 */ - def union(other: Dataset[T]): Dataset[T] = withPlan[T](other){ (left, right) => + def union(other: Dataset[T]): Dataset[T] = withPlan[T](other) { (left, right) => // This breaks caching, but it's usually ok because it addresses a very specific use case: // using union to union many files or partitions. CombineUnions(Union(left, right)) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/CompressionCodecs.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/CompressionCodecs.scala index 032ba61d9dc641d309be18f037217d261836d66a..41cff07472d1e9f3b0f69efaa092117d30400c1e 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/CompressionCodecs.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/CompressionCodecs.scala @@ -57,7 +57,7 @@ private[datasources] object CompressionCodecs { * `codec` should be a full class path */ def setCodecConfiguration(conf: Configuration, codec: String): Unit = { - if (codec != null){ + if (codec != null) { conf.set("mapreduce.output.fileoutputformat.compress", "true") conf.set("mapreduce.output.fileoutputformat.compress.type", CompressionType.BLOCK.toString) conf.set("mapreduce.output.fileoutputformat.compress.codec", codec) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/ui/ExecutionPage.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/ui/ExecutionPage.scala index 49915adf6cd29c8a264134c0fe58803f8781e6b9..9d3cd9bb14ecd8d971228dc5ddddb2b62c0f882f 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/ui/ExecutionPage.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/ui/ExecutionPage.scala @@ -114,7 +114,7 @@ private[sql] class ExecutionPage(parent: SQLTab) extends WebUIPage("execution") {metadata} </div> {planVisualizationResources} - <script>$(function(){{ renderPlanViz(); }})</script> + <script>$(function() {{ renderPlanViz(); }})</script> </div> } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/parquet/ParquetIOSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/parquet/ParquetIOSuite.scala index 34e914cb1eb4d847d9a2b3edfeeecae668c837f7..b7834d76ccb6f35c4103de5c7e0ea98ae09023ae 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/parquet/ParquetIOSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/parquet/ParquetIOSuite.scala @@ -145,7 +145,7 @@ class ParquetIOSuite extends QueryTest with ParquetTest with SharedSQLContext { withTempPath { dir => val data = makeDecimalRDD(DecimalType(precision, scale)) data.write.parquet(dir.getCanonicalPath) - readParquetFile(dir.getCanonicalPath){ df => { + readParquetFile(dir.getCanonicalPath) { df => { checkAnswer(df, data.collect().toSeq) }} } diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/client/FiltersSuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/client/FiltersSuite.scala index 5e7b93d45710604c3504385289fe39bdd06bf19d..16b2d042a24886655608b2db0044ef6ee8c7c00a 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/client/FiltersSuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/client/FiltersSuite.scala @@ -65,7 +65,7 @@ class FiltersSuite extends SparkFunSuite with Logging { "") private def filterTest(name: String, filters: Seq[Expression], result: String) = { - test(name){ + test(name) { val converted = shim.convertFilters(testTable, filters) if (converted != result) { fail( diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveUDFSuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveUDFSuite.scala index 703cfffee1587a106133fc9ad5db1f9498a7cfc8..d7c529ab0e10db892e196c2cccfb3015e9c2075c 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveUDFSuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveUDFSuite.scala @@ -361,7 +361,7 @@ class HiveUDFSuite extends QueryTest with TestHiveSingleton with SQLTestUtils { } } - test("SPARK-11522 select input_file_name from non-parquet table"){ + test("SPARK-11522 select input_file_name from non-parquet table") { withTempDir { tempDir => diff --git a/streaming/src/main/scala/org/apache/spark/streaming/Checkpoint.scala b/streaming/src/main/scala/org/apache/spark/streaming/Checkpoint.scala index 298cdc05acfa9292373b924566dd9f47a7c01d1e..11a4c7dfd011fa234c723e085ae08b0141908849 100644 --- a/streaming/src/main/scala/org/apache/spark/streaming/Checkpoint.scala +++ b/streaming/src/main/scala/org/apache/spark/streaming/Checkpoint.scala @@ -230,7 +230,7 @@ class CheckpointWriter( // If the checkpoint file exists, back it up // If the backup exists as well, just delete it, otherwise rename will fail if (fs.exists(checkpointFile)) { - if (fs.exists(backupFile)){ + if (fs.exists(backupFile)) { fs.delete(backupFile, true) // just in case it exists } if (!fs.rename(checkpointFile, backupFile)) { diff --git a/streaming/src/main/scala/org/apache/spark/streaming/ui/StreamingPage.scala b/streaming/src/main/scala/org/apache/spark/streaming/ui/StreamingPage.scala index eb1e5b0fdc98f4b43a8b9c7bf5352c283b3bbaa1..b1bcd0680380e0725edad61f54a742316888aa8f 100644 --- a/streaming/src/main/scala/org/apache/spark/streaming/ui/StreamingPage.scala +++ b/streaming/src/main/scala/org/apache/spark/streaming/ui/StreamingPage.scala @@ -558,7 +558,7 @@ private[ui] class JsCollector { def toHtml: Seq[Node] = { val js = s""" - |$$(document).ready(function(){ + |$$(document).ready(function() { | ${preparedStatements.mkString("\n")} | ${statements.mkString("\n")} |});""".stripMargin diff --git a/streaming/src/test/scala/org/apache/spark/streaming/receiver/RateLimiterSuite.scala b/streaming/src/test/scala/org/apache/spark/streaming/receiver/RateLimiterSuite.scala index c6330eb3673fb6e5894df7a5bd964ba10d74c2c2..ee3817c4b605da09b4edbff70708c072c2509071 100644 --- a/streaming/src/test/scala/org/apache/spark/streaming/receiver/RateLimiterSuite.scala +++ b/streaming/src/test/scala/org/apache/spark/streaming/receiver/RateLimiterSuite.scala @@ -25,21 +25,21 @@ class RateLimiterSuite extends SparkFunSuite { test("rate limiter initializes even without a maxRate set") { val conf = new SparkConf() - val rateLimiter = new RateLimiter(conf){} + val rateLimiter = new RateLimiter(conf) {} rateLimiter.updateRate(105) assert(rateLimiter.getCurrentLimit == 105) } test("rate limiter updates when below maxRate") { val conf = new SparkConf().set("spark.streaming.receiver.maxRate", "110") - val rateLimiter = new RateLimiter(conf){} + val rateLimiter = new RateLimiter(conf) {} rateLimiter.updateRate(105) assert(rateLimiter.getCurrentLimit == 105) } test("rate limiter stays below maxRate despite large updates") { val conf = new SparkConf().set("spark.streaming.receiver.maxRate", "100") - val rateLimiter = new RateLimiter(conf){} + val rateLimiter = new RateLimiter(conf) {} rateLimiter.updateRate(105) assert(rateLimiter.getCurrentLimit === 100) }