From 9040d83bc2cdce06dab0e1bdee4f796da9a9a55c Mon Sep 17 00:00:00 2001
From: WeichenXu <WeichenXu123@outlook.com>
Date: Thu, 16 Jun 2016 17:35:40 -0700
Subject: [PATCH] [SPARK-15608][ML][EXAMPLES][DOC] add examples and documents
 of ml.isotonic regression

## What changes were proposed in this pull request?

add ml doc for ml isotonic regression
add scala example for ml isotonic regression
add java example for ml isotonic regression
add python example for ml isotonic regression

modify scala example for mllib isotonic regression
modify java example for mllib isotonic regression
modify python example for mllib isotonic regression

add data/mllib/sample_isotonic_regression_libsvm_data.txt
delete data/mllib/sample_isotonic_regression_data.txt
## How was this patch tested?

N/A

Author: WeichenXu <WeichenXu123@outlook.com>

Closes #13381 from WeichenXu123/add_isotonic_regression_doc.
---
 .../mllib/sample_isotonic_regression_data.txt | 100 ------------------
 ...sample_isotonic_regression_libsvm_data.txt | 100 ++++++++++++++++++
 docs/ml-classification-regression.md          |  70 ++++++++++++
 .../ml/JavaIsotonicRegressionExample.java     |  62 +++++++++++
 .../mllib/JavaIsotonicRegressionExample.java  |  19 ++--
 .../python/ml/isotonic_regression_example.py  |  54 ++++++++++
 .../mllib/isotonic_regression_example.py      |  11 +-
 .../ml/IsotonicRegressionExample.scala        |  62 +++++++++++
 .../mllib/IsotonicRegressionExample.scala     |   9 +-
 9 files changed, 373 insertions(+), 114 deletions(-)
 delete mode 100644 data/mllib/sample_isotonic_regression_data.txt
 create mode 100644 data/mllib/sample_isotonic_regression_libsvm_data.txt
 create mode 100644 examples/src/main/java/org/apache/spark/examples/ml/JavaIsotonicRegressionExample.java
 create mode 100644 examples/src/main/python/ml/isotonic_regression_example.py
 create mode 100644 examples/src/main/scala/org/apache/spark/examples/ml/IsotonicRegressionExample.scala

diff --git a/data/mllib/sample_isotonic_regression_data.txt b/data/mllib/sample_isotonic_regression_data.txt
deleted file mode 100644
index d257b509d4..0000000000
--- a/data/mllib/sample_isotonic_regression_data.txt
+++ /dev/null
@@ -1,100 +0,0 @@
-0.24579296,0.01
-0.28505864,0.02
-0.31208567,0.03
-0.35900051,0.04
-0.35747068,0.05
-0.16675166,0.06
-0.17491076,0.07
-0.04181540,0.08
-0.04793473,0.09
-0.03926568,0.10
-0.12952575,0.11
-0.00000000,0.12
-0.01376849,0.13
-0.13105558,0.14
-0.08873024,0.15
-0.12595614,0.16
-0.15247323,0.17
-0.25956145,0.18
-0.20040796,0.19
-0.19581846,0.20
-0.15757267,0.21
-0.13717491,0.22
-0.19020908,0.23
-0.19581846,0.24
-0.20091790,0.25
-0.16879143,0.26
-0.18510964,0.27
-0.20040796,0.28
-0.29576747,0.29
-0.43396226,0.30
-0.53391127,0.31
-0.52116267,0.32
-0.48546660,0.33
-0.49209587,0.34
-0.54156043,0.35
-0.59765426,0.36
-0.56144824,0.37
-0.58592555,0.38
-0.52983172,0.39
-0.50178480,0.40
-0.52626211,0.41
-0.58286588,0.42
-0.64660887,0.43
-0.68077511,0.44
-0.74298827,0.45
-0.64864865,0.46
-0.67261601,0.47
-0.65782764,0.48
-0.69811321,0.49
-0.63029067,0.50
-0.61601224,0.51
-0.63233044,0.52
-0.65323814,0.53
-0.65323814,0.54
-0.67363590,0.55
-0.67006629,0.56
-0.51555329,0.57
-0.50892402,0.58
-0.33299337,0.59
-0.36206017,0.60
-0.43090260,0.61
-0.45996940,0.62
-0.56348802,0.63
-0.54920959,0.64
-0.48393677,0.65
-0.48495665,0.66
-0.46965834,0.67
-0.45181030,0.68
-0.45843957,0.69
-0.47118817,0.70
-0.51555329,0.71
-0.58031617,0.72
-0.55481897,0.73
-0.56297807,0.74
-0.56603774,0.75
-0.57929628,0.76
-0.64762876,0.77
-0.66241713,0.78
-0.69301377,0.79
-0.65119837,0.80
-0.68332483,0.81
-0.66598674,0.82
-0.73890872,0.83
-0.73992861,0.84
-0.84242733,0.85
-0.91330954,0.86
-0.88016318,0.87
-0.90719021,0.88
-0.93115757,0.89
-0.93115757,0.90
-0.91942886,0.91
-0.92911780,0.92
-0.95665477,0.93
-0.95002550,0.94
-0.96940337,0.95
-1.00000000,0.96
-0.89801122,0.97
-0.90311066,0.98
-0.90362060,0.99
-0.83477817,1.0
\ No newline at end of file
diff --git a/data/mllib/sample_isotonic_regression_libsvm_data.txt b/data/mllib/sample_isotonic_regression_libsvm_data.txt
new file mode 100644
index 0000000000..f39fe0269c
--- /dev/null
+++ b/data/mllib/sample_isotonic_regression_libsvm_data.txt
@@ -0,0 +1,100 @@
+0.24579296 1:0.01
+0.28505864 1:0.02
+0.31208567 1:0.03
+0.35900051 1:0.04
+0.35747068 1:0.05
+0.16675166 1:0.06
+0.17491076 1:0.07
+0.04181540 1:0.08
+0.04793473 1:0.09
+0.03926568 1:0.10
+0.12952575 1:0.11
+0.00000000 1:0.12
+0.01376849 1:0.13
+0.13105558 1:0.14
+0.08873024 1:0.15
+0.12595614 1:0.16
+0.15247323 1:0.17
+0.25956145 1:0.18
+0.20040796 1:0.19
+0.19581846 1:0.20
+0.15757267 1:0.21
+0.13717491 1:0.22
+0.19020908 1:0.23
+0.19581846 1:0.24
+0.20091790 1:0.25
+0.16879143 1:0.26
+0.18510964 1:0.27
+0.20040796 1:0.28
+0.29576747 1:0.29
+0.43396226 1:0.30
+0.53391127 1:0.31
+0.52116267 1:0.32
+0.48546660 1:0.33
+0.49209587 1:0.34
+0.54156043 1:0.35
+0.59765426 1:0.36
+0.56144824 1:0.37
+0.58592555 1:0.38
+0.52983172 1:0.39
+0.50178480 1:0.40
+0.52626211 1:0.41
+0.58286588 1:0.42
+0.64660887 1:0.43
+0.68077511 1:0.44
+0.74298827 1:0.45
+0.64864865 1:0.46
+0.67261601 1:0.47
+0.65782764 1:0.48
+0.69811321 1:0.49
+0.63029067 1:0.50
+0.61601224 1:0.51
+0.63233044 1:0.52
+0.65323814 1:0.53
+0.65323814 1:0.54
+0.67363590 1:0.55
+0.67006629 1:0.56
+0.51555329 1:0.57
+0.50892402 1:0.58
+0.33299337 1:0.59
+0.36206017 1:0.60
+0.43090260 1:0.61
+0.45996940 1:0.62
+0.56348802 1:0.63
+0.54920959 1:0.64
+0.48393677 1:0.65
+0.48495665 1:0.66
+0.46965834 1:0.67
+0.45181030 1:0.68
+0.45843957 1:0.69
+0.47118817 1:0.70
+0.51555329 1:0.71
+0.58031617 1:0.72
+0.55481897 1:0.73
+0.56297807 1:0.74
+0.56603774 1:0.75
+0.57929628 1:0.76
+0.64762876 1:0.77
+0.66241713 1:0.78
+0.69301377 1:0.79
+0.65119837 1:0.80
+0.68332483 1:0.81
+0.66598674 1:0.82
+0.73890872 1:0.83
+0.73992861 1:0.84
+0.84242733 1:0.85
+0.91330954 1:0.86
+0.88016318 1:0.87
+0.90719021 1:0.88
+0.93115757 1:0.89
+0.93115757 1:0.90
+0.91942886 1:0.91
+0.92911780 1:0.92
+0.95665477 1:0.93
+0.95002550 1:0.94
+0.96940337 1:0.95
+1.00000000 1:0.96
+0.89801122 1:0.97
+0.90311066 1:0.98
+0.90362060 1:0.99
+0.83477817 1:1.0
\ No newline at end of file
diff --git a/docs/ml-classification-regression.md b/docs/ml-classification-regression.md
index d7e5521cbc..3d6106b532 100644
--- a/docs/ml-classification-regression.md
+++ b/docs/ml-classification-regression.md
@@ -691,6 +691,76 @@ The implementation matches the result from R's survival function
 </div>
 
 
+## Isotonic regression
+[Isotonic regression](http://en.wikipedia.org/wiki/Isotonic_regression)
+belongs to the family of regression algorithms. Formally isotonic regression is a problem where
+given a finite set of real numbers `$Y = {y_1, y_2, ..., y_n}$` representing observed responses
+and `$X = {x_1, x_2, ..., x_n}$` the unknown response values to be fitted
+finding a function that minimises
+
+`\begin{equation}
+  f(x) = \sum_{i=1}^n w_i (y_i - x_i)^2
+\end{equation}`
+
+with respect to complete order subject to
+`$x_1\le x_2\le ...\le x_n$` where `$w_i$` are positive weights.
+The resulting function is called isotonic regression and it is unique.
+It can be viewed as least squares problem under order restriction.
+Essentially isotonic regression is a
+[monotonic function](http://en.wikipedia.org/wiki/Monotonic_function)
+best fitting the original data points.
+
+We implement a
+[pool adjacent violators algorithm](http://doi.org/10.1198/TECH.2010.10111)
+which uses an approach to
+[parallelizing isotonic regression](http://doi.org/10.1007/978-3-642-99789-1_10).
+The training input is a DataFrame which contains three columns
+label, features and weight. Additionally IsotonicRegression algorithm has one
+optional parameter called $isotonic$ defaulting to true.
+This argument specifies if the isotonic regression is
+isotonic (monotonically increasing) or antitonic (monotonically decreasing).
+
+Training returns an IsotonicRegressionModel that can be used to predict
+labels for both known and unknown features. The result of isotonic regression
+is treated as piecewise linear function. The rules for prediction therefore are:
+
+* If the prediction input exactly matches a training feature
+  then associated prediction is returned. In case there are multiple predictions with the same
+  feature then one of them is returned. Which one is undefined
+  (same as java.util.Arrays.binarySearch).
+* If the prediction input is lower or higher than all training features
+  then prediction with lowest or highest feature is returned respectively.
+  In case there are multiple predictions with the same feature
+  then the lowest or highest is returned respectively.
+* If the prediction input falls between two training features then prediction is treated
+  as piecewise linear function and interpolated value is calculated from the
+  predictions of the two closest features. In case there are multiple values
+  with the same feature then the same rules as in previous point are used.
+
+### Examples
+
+<div class="codetabs">
+<div data-lang="scala" markdown="1">
+
+Refer to the [`IsotonicRegression` Scala docs](api/scala/index.html#org.apache.spark.ml.regression.IsotonicRegression) for details on the API.
+
+{% include_example scala/org/apache/spark/examples/ml/IsotonicRegressionExample.scala %}
+</div>
+<div data-lang="java" markdown="1">
+
+Refer to the [`IsotonicRegression` Java docs](api/java/org/apache/spark/ml/regression/IsotonicRegression.html) for details on the API.
+
+{% include_example java/org/apache/spark/examples/ml/JavaIsotonicRegressionExample.java %}
+</div>
+<div data-lang="python" markdown="1">
+
+Refer to the [`IsotonicRegression` Python docs](api/python/pyspark.ml.html#pyspark.ml.regression.IsotonicRegression) for more details on the API.
+
+{% include_example python/ml/isotonic_regression_example.py %}
+</div>
+</div>
+
+
 
 # Decision trees
 
diff --git a/examples/src/main/java/org/apache/spark/examples/ml/JavaIsotonicRegressionExample.java b/examples/src/main/java/org/apache/spark/examples/ml/JavaIsotonicRegressionExample.java
new file mode 100644
index 0000000000..0ec17b0471
--- /dev/null
+++ b/examples/src/main/java/org/apache/spark/examples/ml/JavaIsotonicRegressionExample.java
@@ -0,0 +1,62 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.spark.examples.ml;
+
+// $example on$
+
+import org.apache.spark.ml.regression.IsotonicRegression;
+import org.apache.spark.ml.regression.IsotonicRegressionModel;
+import org.apache.spark.sql.Dataset;
+import org.apache.spark.sql.Row;
+// $example off$
+import org.apache.spark.sql.SparkSession;
+
+/**
+ * An example demonstrating IsotonicRegression.
+ * Run with
+ * <pre>
+ * bin/run-example ml.JavaIsotonicRegressionExample
+ * </pre>
+ */
+public class JavaIsotonicRegressionExample {
+
+  public static void main(String[] args) {
+    // Create a SparkSession.
+    SparkSession spark = SparkSession
+      .builder()
+      .appName("JavaIsotonicRegressionExample")
+      .getOrCreate();
+
+    // $example on$
+    // Loads data.
+    Dataset<Row> dataset = spark.read().format("libsvm")
+      .load("data/mllib/sample_isotonic_regression_libsvm_data.txt");
+
+    // Trains an isotonic regression model.
+    IsotonicRegression ir = new IsotonicRegression();
+    IsotonicRegressionModel model = ir.fit(dataset);
+
+    System.out.println("Boundaries in increasing order: " + model.boundaries());
+    System.out.println("Predictions associated with the boundaries: " + model.predictions());
+
+    // Makes predictions.
+    model.transform(dataset).show();
+    // $example off$
+
+    spark.stop();
+  }
+}
diff --git a/examples/src/main/java/org/apache/spark/examples/mllib/JavaIsotonicRegressionExample.java b/examples/src/main/java/org/apache/spark/examples/mllib/JavaIsotonicRegressionExample.java
index c6361a3729..a30b5f1f73 100644
--- a/examples/src/main/java/org/apache/spark/examples/mllib/JavaIsotonicRegressionExample.java
+++ b/examples/src/main/java/org/apache/spark/examples/mllib/JavaIsotonicRegressionExample.java
@@ -17,6 +17,7 @@
 package org.apache.spark.examples.mllib;
 
 // $example on$
+
 import scala.Tuple2;
 import scala.Tuple3;
 import org.apache.spark.api.java.function.Function;
@@ -27,6 +28,8 @@ import org.apache.spark.api.java.JavaSparkContext;
 import org.apache.spark.api.java.JavaRDD;
 import org.apache.spark.mllib.regression.IsotonicRegression;
 import org.apache.spark.mllib.regression.IsotonicRegressionModel;
+import org.apache.spark.mllib.regression.LabeledPoint;
+import org.apache.spark.mllib.util.MLUtils;
 // $example off$
 import org.apache.spark.SparkConf;
 
@@ -35,27 +38,29 @@ public class JavaIsotonicRegressionExample {
     SparkConf sparkConf = new SparkConf().setAppName("JavaIsotonicRegressionExample");
     JavaSparkContext jsc = new JavaSparkContext(sparkConf);
     // $example on$
-    JavaRDD<String> data = jsc.textFile("data/mllib/sample_isotonic_regression_data.txt");
+    JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(
+      jsc.sc(), "data/mllib/sample_isotonic_regression_libsvm_data.txt").toJavaRDD();
 
     // Create label, feature, weight tuples from input data with weight set to default value 1.0.
     JavaRDD<Tuple3<Double, Double, Double>> parsedData = data.map(
-      new Function<String, Tuple3<Double, Double, Double>>() {
-        public Tuple3<Double, Double, Double> call(String line) {
-          String[] parts = line.split(",");
-          return new Tuple3<>(new Double(parts[0]), new Double(parts[1]), 1.0);
+      new Function<LabeledPoint, Tuple3<Double, Double, Double>>() {
+        public Tuple3<Double, Double, Double> call(LabeledPoint point) {
+          return new Tuple3<>(new Double(point.label()),
+            new Double(point.features().apply(0)), 1.0);
         }
       }
     );
 
     // Split data into training (60%) and test (40%) sets.
     JavaRDD<Tuple3<Double, Double, Double>>[] splits =
-        parsedData.randomSplit(new double[]{0.6, 0.4}, 11L);
+      parsedData.randomSplit(new double[]{0.6, 0.4}, 11L);
     JavaRDD<Tuple3<Double, Double, Double>> training = splits[0];
     JavaRDD<Tuple3<Double, Double, Double>> test = splits[1];
 
     // Create isotonic regression model from training data.
     // Isotonic parameter defaults to true so it is only shown for demonstration
-    final IsotonicRegressionModel model = new IsotonicRegression().setIsotonic(true).run(training);
+    final IsotonicRegressionModel model =
+      new IsotonicRegression().setIsotonic(true).run(training);
 
     // Create tuples of predicted and real labels.
     JavaPairRDD<Double, Double> predictionAndLabel = test.mapToPair(
diff --git a/examples/src/main/python/ml/isotonic_regression_example.py b/examples/src/main/python/ml/isotonic_regression_example.py
new file mode 100644
index 0000000000..1e61bd8eff
--- /dev/null
+++ b/examples/src/main/python/ml/isotonic_regression_example.py
@@ -0,0 +1,54 @@
+#
+# Licensed to the Apache Software Foundation (ASF) under one or more
+# contributor license agreements.  See the NOTICE file distributed with
+# this work for additional information regarding copyright ownership.
+# The ASF licenses this file to You under the Apache License, Version 2.0
+# (the "License"); you may not use this file except in compliance with
+# the License.  You may obtain a copy of the License at
+#
+#    http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+"""
+Isotonic Regression Example.
+"""
+from __future__ import print_function
+
+# $example on$
+from pyspark.ml.regression import IsotonicRegression, IsotonicRegressionModel
+# $example off$
+from pyspark.sql import SparkSession
+
+"""
+An example demonstrating isotonic regression.
+Run with:
+  bin/spark-submit examples/src/main/python/ml/isotonic_regression_example.py
+"""
+if __name__ == "__main__":
+
+    spark = SparkSession\
+        .builder\
+        .appName("PythonIsotonicRegressionExample")\
+        .getOrCreate()
+
+    # $example on$
+    # Loads data.
+    dataset = spark.read.format("libsvm")\
+        .load("data/mllib/sample_isotonic_regression_libsvm_data.txt")
+
+    # Trains an isotonic regression model.
+    model = IsotonicRegression().fit(dataset)
+    print("Boundaries in increasing order: " + str(model.boundaries))
+    print("Predictions associated with the boundaries: " + str(model.predictions))
+
+    # Makes predictions.
+    model.transform(dataset).show()
+    # $example off$
+
+    spark.stop()
diff --git a/examples/src/main/python/mllib/isotonic_regression_example.py b/examples/src/main/python/mllib/isotonic_regression_example.py
index 89dc9f4b66..33d618ab48 100644
--- a/examples/src/main/python/mllib/isotonic_regression_example.py
+++ b/examples/src/main/python/mllib/isotonic_regression_example.py
@@ -23,7 +23,8 @@ from __future__ import print_function
 from pyspark import SparkContext
 # $example on$
 import math
-from pyspark.mllib.regression import IsotonicRegression, IsotonicRegressionModel
+from pyspark.mllib.regression import LabeledPoint, IsotonicRegression, IsotonicRegressionModel
+from pyspark.mllib.util import MLUtils
 # $example off$
 
 if __name__ == "__main__":
@@ -31,10 +32,14 @@ if __name__ == "__main__":
     sc = SparkContext(appName="PythonIsotonicRegressionExample")
 
     # $example on$
-    data = sc.textFile("data/mllib/sample_isotonic_regression_data.txt")
+    # Load and parse the data
+    def parsePoint(labeledData):
+        return (labeledData.label, labeledData.features[0], 1.0)
+
+    data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_isotonic_regression_libsvm_data.txt")
 
     # Create label, feature, weight tuples from input data with weight set to default value 1.0.
-    parsedData = data.map(lambda line: tuple([float(x) for x in line.split(',')]) + (1.0,))
+    parsedData = data.map(parsePoint)
 
     # Split data into training (60%) and test (40%) sets.
     training, test = parsedData.randomSplit([0.6, 0.4], 11)
diff --git a/examples/src/main/scala/org/apache/spark/examples/ml/IsotonicRegressionExample.scala b/examples/src/main/scala/org/apache/spark/examples/ml/IsotonicRegressionExample.scala
new file mode 100644
index 0000000000..7c5d3f2341
--- /dev/null
+++ b/examples/src/main/scala/org/apache/spark/examples/ml/IsotonicRegressionExample.scala
@@ -0,0 +1,62 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// scalastyle:off println
+package org.apache.spark.examples.ml
+
+// $example on$
+import org.apache.spark.ml.regression.IsotonicRegression
+// $example off$
+import org.apache.spark.sql.SparkSession
+
+/**
+ * An example demonstrating Isotonic Regression.
+ * Run with
+ * {{{
+ * bin/run-example ml.IsotonicRegressionExample
+ * }}}
+ */
+object IsotonicRegressionExample {
+
+  def main(args: Array[String]): Unit = {
+
+    // Creates a SparkSession.
+    val spark = SparkSession
+      .builder
+      .appName(s"${this.getClass.getSimpleName}")
+      .getOrCreate()
+
+    // $example on$
+    // Loads data.
+    val dataset = spark.read.format("libsvm")
+      .load("data/mllib/sample_isotonic_regression_libsvm_data.txt")
+
+    // Trains an isotonic regression model.
+    val ir = new IsotonicRegression()
+    val model = ir.fit(dataset)
+
+    println(s"Boundaries in increasing order: ${model.boundaries}")
+    println(s"Predictions associated with the boundaries: ${model.predictions}")
+
+    // Makes predictions.
+    model.transform(dataset).show()
+    // $example off$
+
+    spark.stop()
+  }
+}
+// scalastyle:on println
diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/IsotonicRegressionExample.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/IsotonicRegressionExample.scala
index c4336639d7..e5dea129c1 100644
--- a/examples/src/main/scala/org/apache/spark/examples/mllib/IsotonicRegressionExample.scala
+++ b/examples/src/main/scala/org/apache/spark/examples/mllib/IsotonicRegressionExample.scala
@@ -21,6 +21,7 @@ package org.apache.spark.examples.mllib
 import org.apache.spark.{SparkConf, SparkContext}
 // $example on$
 import org.apache.spark.mllib.regression.{IsotonicRegression, IsotonicRegressionModel}
+import org.apache.spark.mllib.util.MLUtils
 // $example off$
 
 object IsotonicRegressionExample {
@@ -30,12 +31,12 @@ object IsotonicRegressionExample {
     val conf = new SparkConf().setAppName("IsotonicRegressionExample")
     val sc = new SparkContext(conf)
     // $example on$
-    val data = sc.textFile("data/mllib/sample_isotonic_regression_data.txt")
+    val data = MLUtils.loadLibSVMFile(sc,
+      "data/mllib/sample_isotonic_regression_libsvm_data.txt").cache()
 
     // Create label, feature, weight tuples from input data with weight set to default value 1.0.
-    val parsedData = data.map { line =>
-      val parts = line.split(',').map(_.toDouble)
-      (parts(0), parts(1), 1.0)
+    val parsedData = data.map { labeledPoint =>
+      (labeledPoint.label, labeledPoint.features(0), 1.0)
     }
 
     // Split data into training (60%) and test (40%) sets.
-- 
GitLab