From 8f11c6116bf8c7246682cbb2d6f27bf0f1531c6d Mon Sep 17 00:00:00 2001 From: Xiangrui Meng <meng@databricks.com> Date: Thu, 21 May 2015 22:57:33 -0700 Subject: [PATCH] [SPARK-7535] [.0] [MLLIB] Audit the pipeline APIs for 1.4 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Some changes to the pipeilne APIs: 1. Estimator/Transformer/ doesn’t need to extend Params since PipelineStage already does. 1. Move Evaluator to ml.evaluation. 1. Mention larger metric values are better. 1. PipelineModel doc. “compiled†-> “fitted†1. Hide object PolynomialExpansion. 1. Hide object VectorAssembler. 1. Word2Vec.minCount (and other) -> group param 1. ParamValidators -> DeveloperApi 1. Hide MetadataUtils/SchemaUtils. jkbradley Author: Xiangrui Meng <meng@databricks.com> Closes #6322 from mengxr/SPARK-7535.0 and squashes the following commits: 9e9c7da [Xiangrui Meng] move JavaEvaluator to ml.evaluation as well e179480 [Xiangrui Meng] move Evaluation to ml.evaluation in PySpark 08ef61f [Xiangrui Meng] update pipieline APIs --- .../scala/org/apache/spark/ml/Estimator.scala | 2 +- .../scala/org/apache/spark/ml/Pipeline.scala | 2 +- .../org/apache/spark/ml/Transformer.scala | 2 +- .../BinaryClassificationEvaluator.scala | 2 +- .../spark/ml/{ => evaluation}/Evaluator.scala | 4 +- .../ml/feature/PolynomialExpansion.scala | 2 +- .../spark/ml/feature/VectorAssembler.scala | 3 +- .../apache/spark/ml/feature/Word2Vec.scala | 3 + .../org/apache/spark/ml/param/params.scala | 6 +- .../spark/ml/tuning/CrossValidator.scala | 1 + .../apache/spark/ml/util/MetadataUtils.scala | 6 +- .../apache/spark/ml/util/SchemaUtils.scala | 6 +- python/pyspark/ml/__init__.py | 4 +- python/pyspark/ml/evaluation.py | 63 ++++++++++++++++++- python/pyspark/ml/pipeline.py | 37 ----------- python/pyspark/ml/wrapper.py | 21 +------ 16 files changed, 84 insertions(+), 80 deletions(-) rename mllib/src/main/scala/org/apache/spark/ml/{ => evaluation}/Evaluator.scala (93%) diff --git a/mllib/src/main/scala/org/apache/spark/ml/Estimator.scala b/mllib/src/main/scala/org/apache/spark/ml/Estimator.scala index 7f3f3262a6..9e16e60270 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/Estimator.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/Estimator.scala @@ -28,7 +28,7 @@ import org.apache.spark.sql.DataFrame * Abstract class for estimators that fit models to data. */ @AlphaComponent -abstract class Estimator[M <: Model[M]] extends PipelineStage with Params { +abstract class Estimator[M <: Model[M]] extends PipelineStage { /** * Fits a single model to the input data with optional parameters. diff --git a/mllib/src/main/scala/org/apache/spark/ml/Pipeline.scala b/mllib/src/main/scala/org/apache/spark/ml/Pipeline.scala index fac54188f9..43bee1b770 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/Pipeline.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/Pipeline.scala @@ -170,7 +170,7 @@ class Pipeline(override val uid: String) extends Estimator[PipelineModel] { /** * :: AlphaComponent :: - * Represents a compiled pipeline. + * Represents a fitted pipeline. */ @AlphaComponent class PipelineModel private[ml] ( diff --git a/mllib/src/main/scala/org/apache/spark/ml/Transformer.scala b/mllib/src/main/scala/org/apache/spark/ml/Transformer.scala index d96b54e511..38bb6a5a53 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/Transformer.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/Transformer.scala @@ -32,7 +32,7 @@ import org.apache.spark.sql.types._ * Abstract class for transformers that transform one dataset into another. */ @AlphaComponent -abstract class Transformer extends PipelineStage with Params { +abstract class Transformer extends PipelineStage { /** * Transforms the dataset with optional parameters diff --git a/mllib/src/main/scala/org/apache/spark/ml/evaluation/BinaryClassificationEvaluator.scala b/mllib/src/main/scala/org/apache/spark/ml/evaluation/BinaryClassificationEvaluator.scala index c1af09c969..ddbdd00ceb 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/evaluation/BinaryClassificationEvaluator.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/evaluation/BinaryClassificationEvaluator.scala @@ -18,7 +18,7 @@ package org.apache.spark.ml.evaluation import org.apache.spark.annotation.AlphaComponent -import org.apache.spark.ml.Evaluator +import org.apache.spark.ml.evaluation.Evaluator import org.apache.spark.ml.param._ import org.apache.spark.ml.param.shared._ import org.apache.spark.ml.util.{Identifiable, SchemaUtils} diff --git a/mllib/src/main/scala/org/apache/spark/ml/Evaluator.scala b/mllib/src/main/scala/org/apache/spark/ml/evaluation/Evaluator.scala similarity index 93% rename from mllib/src/main/scala/org/apache/spark/ml/Evaluator.scala rename to mllib/src/main/scala/org/apache/spark/ml/evaluation/Evaluator.scala index 5f2f8c94e9..cabd1c97c0 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/Evaluator.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/evaluation/Evaluator.scala @@ -15,7 +15,7 @@ * limitations under the License. */ -package org.apache.spark.ml +package org.apache.spark.ml.evaluation import org.apache.spark.annotation.AlphaComponent import org.apache.spark.ml.param.{ParamMap, Params} @@ -29,7 +29,7 @@ import org.apache.spark.sql.DataFrame abstract class Evaluator extends Params { /** - * Evaluates the output. + * Evaluates model output and returns a scalar metric (larger is better). * * @param dataset a dataset that contains labels/observations and predictions. * @param paramMap parameter map that specifies the input columns and output metrics diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/PolynomialExpansion.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/PolynomialExpansion.scala index 41564410e4..8ddf9d6a1e 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/PolynomialExpansion.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/PolynomialExpansion.scala @@ -75,7 +75,7 @@ class PolynomialExpansion(override val uid: String) * To handle sparsity, if c is zero, we can skip all monomials that contain it. We remember the * current index and increment it properly for sparse input. */ -object PolynomialExpansion { +private[feature] object PolynomialExpansion { private def choose(n: Int, k: Int): Int = { Range(n, n - k, -1).product / Range(k, 1, -1).product diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/VectorAssembler.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/VectorAssembler.scala index 1c00094769..181b62f46f 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/VectorAssembler.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/VectorAssembler.scala @@ -78,8 +78,7 @@ class VectorAssembler(override val uid: String) } } -@AlphaComponent -object VectorAssembler { +private object VectorAssembler { private[feature] def assemble(vv: Any*): Vector = { val indices = ArrayBuilder.make[Int] diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/Word2Vec.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/Word2Vec.scala index 90f0be76df..ed03266922 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/Word2Vec.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/Word2Vec.scala @@ -37,6 +37,7 @@ private[feature] trait Word2VecBase extends Params /** * The dimension of the code that you want to transform from words. + * @group param */ final val vectorSize = new IntParam( this, "vectorSize", "the dimension of codes after transforming from words") @@ -47,6 +48,7 @@ private[feature] trait Word2VecBase extends Params /** * Number of partitions for sentences of words. + * @group param */ final val numPartitions = new IntParam( this, "numPartitions", "number of partitions for sentences of words") @@ -58,6 +60,7 @@ private[feature] trait Word2VecBase extends Params /** * The minimum number of times a token must appear to be included in the word2vec model's * vocabulary. + * @group param */ final val minCount = new IntParam(this, "minCount", "the minimum number of times a token must " + "appear to be included in the word2vec model's vocabulary") diff --git a/mllib/src/main/scala/org/apache/spark/ml/param/params.scala b/mllib/src/main/scala/org/apache/spark/ml/param/params.scala index 94abfcda5c..12fc5b561f 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/param/params.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/param/params.scala @@ -24,7 +24,7 @@ import scala.annotation.varargs import scala.collection.mutable import scala.collection.JavaConverters._ -import org.apache.spark.annotation.AlphaComponent +import org.apache.spark.annotation.{DeveloperApi, AlphaComponent} import org.apache.spark.ml.util.Identifiable /** @@ -92,9 +92,11 @@ class Param[T](val parent: String, val name: String, val doc: String, val isVali } /** + * :: DeveloperApi :: * Factory methods for common validation functions for [[Param.isValid]]. * The numerical methods only support Int, Long, Float, and Double. */ +@DeveloperApi object ParamValidators { /** (private[param]) Default validation always return true */ @@ -529,11 +531,13 @@ trait Params extends Identifiable with Serializable { } /** + * :: DeveloperApi :: * Java-friendly wrapper for [[Params]]. * Java developers who need to extend [[Params]] should use this class instead. * If you need to extend a abstract class which already extends [[Params]], then that abstract * class should be Java-friendly as well. */ +@DeveloperApi abstract class JavaParams extends Params /** diff --git a/mllib/src/main/scala/org/apache/spark/ml/tuning/CrossValidator.scala b/mllib/src/main/scala/org/apache/spark/ml/tuning/CrossValidator.scala index 5c6ff2dda3..e21ff94a20 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/tuning/CrossValidator.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/tuning/CrossValidator.scala @@ -22,6 +22,7 @@ import com.github.fommil.netlib.F2jBLAS import org.apache.spark.Logging import org.apache.spark.annotation.AlphaComponent import org.apache.spark.ml._ +import org.apache.spark.ml.evaluation.Evaluator import org.apache.spark.ml.param._ import org.apache.spark.ml.util.Identifiable import org.apache.spark.mllib.util.MLUtils diff --git a/mllib/src/main/scala/org/apache/spark/ml/util/MetadataUtils.scala b/mllib/src/main/scala/org/apache/spark/ml/util/MetadataUtils.scala index 56075c9a6b..2a1db90f2c 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/util/MetadataUtils.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/util/MetadataUtils.scala @@ -19,18 +19,14 @@ package org.apache.spark.ml.util import scala.collection.immutable.HashMap -import org.apache.spark.annotation.Experimental import org.apache.spark.ml.attribute._ import org.apache.spark.sql.types.StructField /** - * :: Experimental :: - * * Helper utilities for tree-based algorithms */ -@Experimental -object MetadataUtils { +private[spark] object MetadataUtils { /** * Examine a schema to identify the number of classes in a label column. diff --git a/mllib/src/main/scala/org/apache/spark/ml/util/SchemaUtils.scala b/mllib/src/main/scala/org/apache/spark/ml/util/SchemaUtils.scala index 11592b77eb..7cd53c6d7e 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/util/SchemaUtils.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/util/SchemaUtils.scala @@ -17,15 +17,13 @@ package org.apache.spark.ml.util -import org.apache.spark.annotation.DeveloperApi import org.apache.spark.sql.types.{DataType, StructField, StructType} + /** - * :: DeveloperApi :: * Utils for handling schemas. */ -@DeveloperApi -object SchemaUtils { +private[spark] object SchemaUtils { // TODO: Move the utility methods to SQL. diff --git a/python/pyspark/ml/__init__.py b/python/pyspark/ml/__init__.py index da793d9db7..327a11b14b 100644 --- a/python/pyspark/ml/__init__.py +++ b/python/pyspark/ml/__init__.py @@ -15,6 +15,6 @@ # limitations under the License. # -from pyspark.ml.pipeline import Transformer, Estimator, Model, Pipeline, PipelineModel, Evaluator +from pyspark.ml.pipeline import Transformer, Estimator, Model, Pipeline, PipelineModel -__all__ = ["Transformer", "Estimator", "Model", "Pipeline", "PipelineModel", "Evaluator"] +__all__ = ["Transformer", "Estimator", "Model", "Pipeline", "PipelineModel"] diff --git a/python/pyspark/ml/evaluation.py b/python/pyspark/ml/evaluation.py index f4655c513c..34e1353def 100644 --- a/python/pyspark/ml/evaluation.py +++ b/python/pyspark/ml/evaluation.py @@ -15,13 +15,72 @@ # limitations under the License. # -from pyspark.ml.wrapper import JavaEvaluator +from abc import abstractmethod, ABCMeta + +from pyspark.ml.wrapper import JavaWrapper from pyspark.ml.param import Param, Params from pyspark.ml.param.shared import HasLabelCol, HasRawPredictionCol from pyspark.ml.util import keyword_only from pyspark.mllib.common import inherit_doc -__all__ = ['BinaryClassificationEvaluator'] +__all__ = ['Evaluator', 'BinaryClassificationEvaluator'] + + +@inherit_doc +class Evaluator(Params): + """ + Base class for evaluators that compute metrics from predictions. + """ + + __metaclass__ = ABCMeta + + @abstractmethod + def _evaluate(self, dataset): + """ + Evaluates the output. + + :param dataset: a dataset that contains labels/observations and + predictions + :return: metric + """ + raise NotImplementedError() + + def evaluate(self, dataset, params={}): + """ + Evaluates the output with optional parameters. + + :param dataset: a dataset that contains labels/observations and + predictions + :param params: an optional param map that overrides embedded + params + :return: metric + """ + if isinstance(params, dict): + if params: + return self.copy(params)._evaluate(dataset) + else: + return self._evaluate(dataset) + else: + raise ValueError("Params must be a param map but got %s." % type(params)) + + +@inherit_doc +class JavaEvaluator(Evaluator, JavaWrapper): + """ + Base class for :py:class:`Evaluator`s that wrap Java/Scala + implementations. + """ + + __metaclass__ = ABCMeta + + def _evaluate(self, dataset): + """ + Evaluates the output. + :param dataset: a dataset that contains labels/observations and predictions. + :return: evaluation metric + """ + self._transfer_params_to_java() + return self._java_obj.evaluate(dataset._jdf) @inherit_doc diff --git a/python/pyspark/ml/pipeline.py b/python/pyspark/ml/pipeline.py index 0f38e02127..a563024b2c 100644 --- a/python/pyspark/ml/pipeline.py +++ b/python/pyspark/ml/pipeline.py @@ -219,40 +219,3 @@ class PipelineModel(Model): def copy(self, extra={}): stages = [stage.copy(extra) for stage in self.stages] return PipelineModel(stages) - - -class Evaluator(Params): - """ - Base class for evaluators that compute metrics from predictions. - """ - - __metaclass__ = ABCMeta - - @abstractmethod - def _evaluate(self, dataset): - """ - Evaluates the output. - - :param dataset: a dataset that contains labels/observations and - predictions - :return: metric - """ - raise NotImplementedError() - - def evaluate(self, dataset, params={}): - """ - Evaluates the output with optional parameters. - - :param dataset: a dataset that contains labels/observations and - predictions - :param params: an optional param map that overrides embedded - params - :return: metric - """ - if isinstance(params, dict): - if params: - return self.copy(params)._evaluate(dataset) - else: - return self._evaluate(dataset) - else: - raise ValueError("Params must be a param map but got %s." % type(params)) diff --git a/python/pyspark/ml/wrapper.py b/python/pyspark/ml/wrapper.py index 4419e16184..7b0893e2cd 100644 --- a/python/pyspark/ml/wrapper.py +++ b/python/pyspark/ml/wrapper.py @@ -20,7 +20,7 @@ from abc import ABCMeta from pyspark import SparkContext from pyspark.sql import DataFrame from pyspark.ml.param import Params -from pyspark.ml.pipeline import Estimator, Transformer, Evaluator, Model +from pyspark.ml.pipeline import Estimator, Transformer, Model from pyspark.mllib.common import inherit_doc, _java2py, _py2java @@ -185,22 +185,3 @@ class JavaModel(Model, JavaTransformer): sc = SparkContext._active_spark_context java_args = [_py2java(sc, arg) for arg in args] return _java2py(sc, m(*java_args)) - - -@inherit_doc -class JavaEvaluator(Evaluator, JavaWrapper): - """ - Base class for :py:class:`Evaluator`s that wrap Java/Scala - implementations. - """ - - __metaclass__ = ABCMeta - - def _evaluate(self, dataset): - """ - Evaluates the output. - :param dataset: a dataset that contains labels/observations and predictions. - :return: evaluation metric - """ - self._transfer_params_to_java() - return self._java_obj.evaluate(dataset._jdf) -- GitLab