From 8cfa218f4f1b05f4d076ec15dd0a033ad3e4500d Mon Sep 17 00:00:00 2001 From: Kousuke Saruta <sarutak@oss.nttdata.co.jp> Date: Tue, 12 Jan 2016 00:51:00 -0800 Subject: [PATCH] [SPARK-12692][BUILD][SQL] Scala style: Fix the style violation (Space before "," or ":") Fix the style violation (space before , and :). This PR is a followup for #10643. Author: Kousuke Saruta <sarutak@oss.nttdata.co.jp> Closes #10718 from sarutak/SPARK-12692-followup-sql. --- scalastyle-config.xml | 2 +- .../spark/sql/catalyst/ScalaReflection.scala | 6 ++-- .../apache/spark/sql/catalyst/SqlParser.scala | 2 +- .../sql/catalyst/analysis/Analyzer.scala | 6 ++-- .../catalyst/analysis/FunctionRegistry.scala | 4 +-- .../catalyst/analysis/HiveTypeCoercion.scala | 2 +- .../spark/sql/catalyst/dsl/package.scala | 4 ++- .../catalyst/encoders/ExpressionEncoder.scala | 2 +- .../spark/sql/catalyst/encoders/package.scala | 2 +- .../sql/catalyst/expressions/Expression.scala | 2 +- .../expressions/stringExpressions.scala | 6 ++-- .../plans/logical/basicOperators.scala | 6 ++-- .../sql/catalyst/util/NumberConverter.scala | 2 +- .../apache/spark/sql/types/ArrayType.scala | 2 +- .../org/apache/spark/sql/types/Decimal.scala | 2 ++ .../encoders/EncoderErrorMessageSuite.scala | 2 +- .../encoders/ExpressionEncoderSuite.scala | 6 ++-- .../BooleanSimplificationSuite.scala | 2 +- .../scala/org/apache/spark/sql/Column.scala | 4 ++- .../org/apache/spark/sql/DataFrame.scala | 36 +++++++++---------- .../apache/spark/sql/DataFrameHolder.scala | 2 +- .../spark/sql/DataFrameNaFunctions.scala | 8 ++--- .../apache/spark/sql/DataFrameReader.scala | 6 ++-- .../scala/org/apache/spark/sql/Dataset.scala | 18 +++++----- .../org/apache/spark/sql/GroupedData.scala | 10 +++--- .../org/apache/spark/sql/GroupedDataset.scala | 8 ++--- .../org/apache/spark/sql/SQLContext.scala | 12 +++---- .../org/apache/spark/sql/SQLImplicits.scala | 10 +++--- .../org/apache/spark/sql/api/r/SQLUtils.scala | 2 +- .../apache/spark/sql/execution/Exchange.scala | 2 +- .../spark/sql/execution/Queryable.scala | 2 +- .../aggregate/TypedAggregateExpression.scala | 2 +- .../datasources/SqlNewHadoopRDD.scala | 2 +- .../parquet/CatalystSchemaConverter.scala | 2 +- .../execution/joins/CartesianProduct.scala | 2 +- .../sql/execution/metric/SQLMetrics.scala | 2 +- .../sql/execution/stat/FrequentItems.scala | 4 +-- .../apache/spark/sql/expressions/Window.scala | 8 ++--- .../org/apache/spark/sql/functions.scala | 6 ++-- .../spark/sql/jdbc/AggregatedDialect.scala | 2 +- .../apache/spark/sql/jdbc/JdbcDialects.scala | 10 +++--- .../apache/spark/sql/jdbc/MySQLDialect.scala | 7 ++-- .../spark/sql/DatasetAggregatorSuite.scala | 4 +-- .../apache/spark/sql/DatasetCacheSuite.scala | 2 +- .../org/apache/spark/sql/DatasetSuite.scala | 26 +++++++------- .../datasources/json/JsonSuite.scala | 2 +- .../datasources/parquet/ParquetIOSuite.scala | 2 +- .../org/apache/spark/sql/jdbc/JDBCSuite.scala | 4 +-- .../hive/thriftserver/ReflectionUtils.scala | 2 +- .../hive/thriftserver/SparkSQLCLIDriver.scala | 4 +-- .../spark/sql/hive/HiveInspectors.scala | 8 ++--- .../org/apache/spark/sql/hive/hiveUDFs.scala | 2 +- .../spark/sql/hive/HiveInspectorSuite.scala | 4 +-- .../sql/hive/InsertIntoHiveTableSuite.scala | 4 +-- 54 files changed, 150 insertions(+), 141 deletions(-) diff --git a/scalastyle-config.xml b/scalastyle-config.xml index 2439a1f715..b873b62721 100644 --- a/scalastyle-config.xml +++ b/scalastyle-config.xml @@ -218,7 +218,7 @@ This file is divided into 3 sections: <check level="error" class="org.scalastyle.scalariform.EqualsHashCodeChecker" enabled="false"></check> <!-- Should turn this on, but we have a few places that need to be fixed first --> - <check level="warning" class="org.scalastyle.scalariform.DisallowSpaceBeforeTokenChecker" enabled="true"> + <check customId="whitespacebeforetoken" level="warning" class="org.scalastyle.scalariform.DisallowSpaceBeforeTokenChecker" enabled="true"> <parameters> <parameter name="tokens">COLON, COMMA</parameter> </parameters> diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala index 79f723cf9b..23fea0e283 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala @@ -49,7 +49,7 @@ object ScalaReflection extends ScalaReflection { * Unlike `schemaFor`, this function doesn't do any massaging of types into the Spark SQL type * system. As a result, ObjectType will be returned for things like boxed Integers */ - def dataTypeFor[T : TypeTag]: DataType = dataTypeFor(localTypeOf[T]) + def dataTypeFor[T: TypeTag]: DataType = dataTypeFor(localTypeOf[T]) private def dataTypeFor(tpe: `Type`): DataType = ScalaReflectionLock.synchronized { tpe match { @@ -116,7 +116,7 @@ object ScalaReflection extends ScalaReflection { * from ordinal 0 (since there are no names to map to). The actual location can be moved by * calling resolve/bind with a new schema. */ - def constructorFor[T : TypeTag]: Expression = { + def constructorFor[T: TypeTag]: Expression = { val tpe = localTypeOf[T] val clsName = getClassNameFromType(tpe) val walkedTypePath = s"""- root class: "${clsName}"""" :: Nil @@ -386,7 +386,7 @@ object ScalaReflection extends ScalaReflection { * * the element type of [[Array]] or [[Seq]]: `array element class: "abc.xyz.MyClass"` * * the field of [[Product]]: `field (class: "abc.xyz.MyClass", name: "myField")` */ - def extractorsFor[T : TypeTag](inputObject: Expression): CreateNamedStruct = { + def extractorsFor[T: TypeTag](inputObject: Expression): CreateNamedStruct = { val tpe = localTypeOf[T] val clsName = getClassNameFromType(tpe) val walkedTypePath = s"""- root class: "${clsName}"""" :: Nil diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala index 2a132d8b82..6ec408a673 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala @@ -203,7 +203,7 @@ object SqlParser extends AbstractSparkSQLParser with DataTypeParser { ) protected lazy val ordering: Parser[Seq[SortOrder]] = - ( rep1sep(expression ~ direction.? , ",") ^^ { + ( rep1sep(expression ~ direction.?, ",") ^^ { case exps => exps.map(pair => SortOrder(pair._1, pair._2.getOrElse(Ascending))) } ) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala index 8a33af8207..d16880bc4a 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala @@ -84,7 +84,7 @@ class Analyzer( ResolveAggregateFunctions :: DistinctAggregationRewriter(conf) :: HiveTypeCoercion.typeCoercionRules ++ - extendedResolutionRules : _*), + extendedResolutionRules: _*), Batch("Nondeterministic", Once, PullOutNondeterministic), Batch("UDF", Once, @@ -110,7 +110,7 @@ class Analyzer( // Taking into account the reasonableness and the implementation complexity, // here use the CTE definition first, check table name only and ignore database name // see https://github.com/apache/spark/pull/4929#discussion_r27186638 for more info - case u : UnresolvedRelation => + case u: UnresolvedRelation => val substituted = cteRelations.get(u.tableIdentifier.table).map { relation => val withAlias = u.alias.map(Subquery(_, relation)) withAlias.getOrElse(relation) @@ -889,7 +889,7 @@ class Analyzer( _.transform { // Extracts children expressions of a WindowFunction (input parameters of // a WindowFunction). - case wf : WindowFunction => + case wf: WindowFunction => val newChildren = wf.children.map(extractExpr) wf.withNewChildren(newChildren) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/FunctionRegistry.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/FunctionRegistry.scala index 5c2aa3c06b..7c3d45b1e4 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/FunctionRegistry.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/FunctionRegistry.scala @@ -323,13 +323,13 @@ object FunctionRegistry { } else { // Otherwise, find an ctor method that matches the number of arguments, and use that. val params = Seq.fill(expressions.size)(classOf[Expression]) - val f = Try(tag.runtimeClass.getDeclaredConstructor(params : _*)) match { + val f = Try(tag.runtimeClass.getDeclaredConstructor(params: _*)) match { case Success(e) => e case Failure(e) => throw new AnalysisException(s"Invalid number of arguments for function $name") } - Try(f.newInstance(expressions : _*).asInstanceOf[Expression]) match { + Try(f.newInstance(expressions: _*).asInstanceOf[Expression]) match { case Success(e) => e case Failure(e) => throw new AnalysisException(e.getMessage) } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala index dbcbd6854b..e326ea7827 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala @@ -529,7 +529,7 @@ object HiveTypeCoercion { if falseValues.contains(value) => And(IsNotNull(bool), Not(bool)) case EqualTo(left @ BooleanType(), right @ NumericType()) => - transform(left , right) + transform(left, right) case EqualTo(left @ NumericType(), right @ BooleanType()) => transform(right, left) case EqualNullSafe(left @ BooleanType(), right @ NumericType()) => diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/dsl/package.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/dsl/package.scala index 5ac1984043..c4dbcb7b60 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/dsl/package.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/dsl/package.scala @@ -61,9 +61,11 @@ package object dsl { trait ImplicitOperators { def expr: Expression + // scalastyle:off whitespacebeforetoken def unary_- : Expression = UnaryMinus(expr) def unary_! : Predicate = Not(expr) def unary_~ : Expression = BitwiseNot(expr) + // scalastyle:on whitespacebeforetoken def + (other: Expression): Expression = Add(expr, other) def - (other: Expression): Expression = Subtract(expr, other) @@ -141,7 +143,7 @@ package object dsl { // Note that if we make ExpressionConversions an object rather than a trait, we can // then make this a value class to avoid the small penalty of runtime instantiation. def $(args: Any*): analysis.UnresolvedAttribute = { - analysis.UnresolvedAttribute(sc.s(args : _*)) + analysis.UnresolvedAttribute(sc.s(args: _*)) } } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/encoders/ExpressionEncoder.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/encoders/ExpressionEncoder.scala index 05f746e72b..fa4c2d93ec 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/encoders/ExpressionEncoder.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/encoders/ExpressionEncoder.scala @@ -44,7 +44,7 @@ import org.apache.spark.util.Utils * to the name `value`. */ object ExpressionEncoder { - def apply[T : TypeTag](): ExpressionEncoder[T] = { + def apply[T: TypeTag](): ExpressionEncoder[T] = { // We convert the not-serializable TypeTag into StructType and ClassTag. val mirror = typeTag[T].mirror val cls = mirror.runtimeClass(typeTag[T].tpe) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/encoders/package.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/encoders/package.scala index 9e283f5eb6..08ada1f38b 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/encoders/package.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/encoders/package.scala @@ -27,7 +27,7 @@ package object encoders { * references from a specific schema.) This requirement allows us to preserve whether a given * object type is being bound by name or by ordinal when doing resolution. */ - private[sql] def encoderFor[A : Encoder]: ExpressionEncoder[A] = implicitly[Encoder[A]] match { + private[sql] def encoderFor[A: Encoder]: ExpressionEncoder[A] = implicitly[Encoder[A]] match { case e: ExpressionEncoder[A] => e.assertUnresolved() e diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Expression.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Expression.scala index d6219514b7..4ffbfa57e7 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Expression.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Expression.scala @@ -164,7 +164,7 @@ abstract class Expression extends TreeNode[Expression] { * Returns the hash for this expression. Expressions that compute the same result, even if * they differ cosmetically should return the same hash. */ - def semanticHash() : Int = { + def semanticHash(): Int = { def computeHash(e: Seq[Any]): Int = { // See http://stackoverflow.com/questions/113511/hash-code-implementation var hash: Int = 17 diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/stringExpressions.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/stringExpressions.scala index 931f752b4d..bf41f85f79 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/stringExpressions.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/stringExpressions.scala @@ -46,7 +46,7 @@ case class Concat(children: Seq[Expression]) extends Expression with ImplicitCas override def eval(input: InternalRow): Any = { val inputs = children.map(_.eval(input).asInstanceOf[UTF8String]) - UTF8String.concat(inputs : _*) + UTF8String.concat(inputs: _*) } override protected def genCode(ctx: CodeGenContext, ev: GeneratedExpressionCode): String = { @@ -99,7 +99,7 @@ case class ConcatWs(children: Seq[Expression]) case null => Iterator(null.asInstanceOf[UTF8String]) } } - UTF8String.concatWs(flatInputs.head, flatInputs.tail : _*) + UTF8String.concatWs(flatInputs.head, flatInputs.tail: _*) } override protected def genCode(ctx: CodeGenContext, ev: GeneratedExpressionCode): String = { @@ -990,7 +990,7 @@ case class FormatNumber(x: Expression, d: Expression) def typeHelper(p: String): String = { x.dataType match { - case _ : DecimalType => s"""$p.toJavaBigDecimal()""" + case _: DecimalType => s"""$p.toJavaBigDecimal()""" case _ => s"$p" } } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/basicOperators.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/basicOperators.scala index 64957db6b4..5489051e95 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/basicOperators.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/basicOperators.scala @@ -496,7 +496,7 @@ case class MapPartitions[T, U]( /** Factory for constructing new `AppendColumn` nodes. */ object AppendColumns { - def apply[T, U : Encoder]( + def apply[T, U: Encoder]( func: T => U, tEncoder: ExpressionEncoder[T], child: LogicalPlan): AppendColumns[T, U] = { @@ -522,7 +522,7 @@ case class AppendColumns[T, U]( /** Factory for constructing new `MapGroups` nodes. */ object MapGroups { - def apply[K, T, U : Encoder]( + def apply[K, T, U: Encoder]( func: (K, Iterator[T]) => TraversableOnce[U], kEncoder: ExpressionEncoder[K], tEncoder: ExpressionEncoder[T], @@ -557,7 +557,7 @@ case class MapGroups[K, T, U]( /** Factory for constructing new `CoGroup` nodes. */ object CoGroup { - def apply[Key, Left, Right, Result : Encoder]( + def apply[Key, Left, Right, Result: Encoder]( func: (Key, Iterator[Left], Iterator[Right]) => TraversableOnce[Result], keyEnc: ExpressionEncoder[Key], leftEnc: ExpressionEncoder[Left], diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/util/NumberConverter.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/util/NumberConverter.scala index 9fefc5656a..e4417e0955 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/util/NumberConverter.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/util/NumberConverter.scala @@ -122,7 +122,7 @@ object NumberConverter { * unsigned, otherwise it is signed. * NB: This logic is borrowed from org.apache.hadoop.hive.ql.ud.UDFConv */ - def convert(n: Array[Byte] , fromBase: Int, toBase: Int ): UTF8String = { + def convert(n: Array[Byte], fromBase: Int, toBase: Int ): UTF8String = { if (fromBase < Character.MIN_RADIX || fromBase > Character.MAX_RADIX || Math.abs(toBase) < Character.MIN_RADIX || Math.abs(toBase) > Character.MAX_RADIX) { diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/ArrayType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/ArrayType.scala index 520e344361..be7573b95d 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/ArrayType.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/ArrayType.scala @@ -90,7 +90,7 @@ case class ArrayType(elementType: DataType, containsNull: Boolean) extends DataT private[sql] lazy val interpretedOrdering: Ordering[ArrayData] = new Ordering[ArrayData] { private[this] val elementOrdering: Ordering[Any] = elementType match { case dt: AtomicType => dt.ordering.asInstanceOf[Ordering[Any]] - case a : ArrayType => a.interpretedOrdering.asInstanceOf[Ordering[Any]] + case a: ArrayType => a.interpretedOrdering.asInstanceOf[Ordering[Any]] case s: StructType => s.interpretedOrdering.asInstanceOf[Ordering[Any]] case other => throw new IllegalArgumentException(s"Type $other does not support ordered operations") diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/Decimal.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/Decimal.scala index 38ce1604b1..864b47a2a0 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/Decimal.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/Decimal.scala @@ -310,6 +310,7 @@ final class Decimal extends Ordered[Decimal] with Serializable { def remainder(that: Decimal): Decimal = this % that + // scalastyle:off whitespacebeforetoken def unary_- : Decimal = { if (decimalVal.ne(null)) { Decimal(-decimalVal, precision, scale) @@ -317,6 +318,7 @@ final class Decimal extends Ordered[Decimal] with Serializable { Decimal(-longVal, precision, scale) } } + // scalastyle:on whitespacebeforetoken def abs: Decimal = if (this.compare(Decimal.ZERO) < 0) this.unary_- else this diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/encoders/EncoderErrorMessageSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/encoders/EncoderErrorMessageSuite.scala index 8c766ef829..a1c4a861c6 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/encoders/EncoderErrorMessageSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/encoders/EncoderErrorMessageSuite.scala @@ -98,5 +98,5 @@ class EncoderErrorMessageSuite extends SparkFunSuite { s"""array element class: "${clsName[NonEncodable]}"""")) } - private def clsName[T : ClassTag]: String = implicitly[ClassTag[T]].runtimeClass.getName + private def clsName[T: ClassTag]: String = implicitly[ClassTag[T]].runtimeClass.getName } diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/encoders/ExpressionEncoderSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/encoders/ExpressionEncoderSuite.scala index 88c558d80a..67f4dc98be 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/encoders/ExpressionEncoderSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/encoders/ExpressionEncoderSuite.scala @@ -80,7 +80,7 @@ class JavaSerializable(val value: Int) extends Serializable { class ExpressionEncoderSuite extends SparkFunSuite { OuterScopes.outerScopes.put(getClass.getName, this) - implicit def encoder[T : TypeTag]: ExpressionEncoder[T] = ExpressionEncoder() + implicit def encoder[T: TypeTag]: ExpressionEncoder[T] = ExpressionEncoder() // test flat encoders encodeDecodeTest(false, "primitive boolean") @@ -145,7 +145,7 @@ class ExpressionEncoderSuite extends SparkFunSuite { encoderFor(Encoders.javaSerialization[JavaSerializable])) // test product encoders - private def productTest[T <: Product : ExpressionEncoder](input: T): Unit = { + private def productTest[T <: Product: ExpressionEncoder](input: T): Unit = { encodeDecodeTest(input, input.getClass.getSimpleName) } @@ -286,7 +286,7 @@ class ExpressionEncoderSuite extends SparkFunSuite { } } - private def encodeDecodeTest[T : ExpressionEncoder]( + private def encodeDecodeTest[T: ExpressionEncoder]( input: T, testName: String): Unit = { test(s"encode/decode for $testName: $input") { diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/BooleanSimplificationSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/BooleanSimplificationSuite.scala index 000a3b7ecb..6932f185b9 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/BooleanSimplificationSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/BooleanSimplificationSuite.scala @@ -80,7 +80,7 @@ class BooleanSimplificationSuite extends PlanTest with PredicateHelper { checkCondition(('a < 2 || 'a > 3 || 'b > 5) && 'a < 2, 'a < 2) - checkCondition('a < 2 && ('a < 2 || 'a > 3 || 'b > 5) , 'a < 2) + checkCondition('a < 2 && ('a < 2 || 'a > 3 || 'b > 5), 'a < 2) checkCondition(('a < 2 || 'b > 3) && ('a < 2 || 'c > 5), 'a < 2 || ('b > 3 && 'c > 5)) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/Column.scala b/sql/core/src/main/scala/org/apache/spark/sql/Column.scala index e8c61d6e01..a434d03332 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/Column.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/Column.scala @@ -152,7 +152,7 @@ class Column(protected[sql] val expr: Expression) extends Logging { * results into the correct JVM types. * @since 1.6.0 */ - def as[U : Encoder]: TypedColumn[Any, U] = new TypedColumn[Any, U](expr, encoderFor[U]) + def as[U: Encoder]: TypedColumn[Any, U] = new TypedColumn[Any, U](expr, encoderFor[U]) /** * Extracts a value or values from a complex type. @@ -171,6 +171,7 @@ class Column(protected[sql] val expr: Expression) extends Logging { UnresolvedExtractValue(expr, lit(extraction).expr) } + // scalastyle:off whitespacebeforetoken /** * Unary minus, i.e. negate the expression. * {{{ @@ -202,6 +203,7 @@ class Column(protected[sql] val expr: Expression) extends Logging { * @since 1.3.0 */ def unary_! : Column = withExpr { Not(expr) } + // scalastyle:on whitespacebeforetoken /** * Equality test. diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala index 60d2f05b86..fac8950aee 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala @@ -204,7 +204,7 @@ class DataFrame private[sql]( * @since 1.6.0 */ @Experimental - def as[U : Encoder]: Dataset[U] = new Dataset[U](sqlContext, logicalPlan) + def as[U: Encoder]: Dataset[U] = new Dataset[U](sqlContext, logicalPlan) /** * Returns a new [[DataFrame]] with columns renamed. This can be quite convenient in conversion @@ -227,7 +227,7 @@ class DataFrame private[sql]( val newCols = logicalPlan.output.zip(colNames).map { case (oldAttribute, newName) => Column(oldAttribute).as(newName) } - select(newCols : _*) + select(newCols: _*) } /** @@ -579,7 +579,7 @@ class DataFrame private[sql]( */ @scala.annotation.varargs def sortWithinPartitions(sortCol: String, sortCols: String*): DataFrame = { - sortWithinPartitions((sortCol +: sortCols).map(Column(_)) : _*) + sortWithinPartitions((sortCol +: sortCols).map(Column(_)): _*) } /** @@ -608,7 +608,7 @@ class DataFrame private[sql]( */ @scala.annotation.varargs def sort(sortCol: String, sortCols: String*): DataFrame = { - sort((sortCol +: sortCols).map(apply) : _*) + sort((sortCol +: sortCols).map(apply): _*) } /** @@ -631,7 +631,7 @@ class DataFrame private[sql]( * @since 1.3.0 */ @scala.annotation.varargs - def orderBy(sortCol: String, sortCols: String*): DataFrame = sort(sortCol, sortCols : _*) + def orderBy(sortCol: String, sortCols: String*): DataFrame = sort(sortCol, sortCols: _*) /** * Returns a new [[DataFrame]] sorted by the given expressions. @@ -640,7 +640,7 @@ class DataFrame private[sql]( * @since 1.3.0 */ @scala.annotation.varargs - def orderBy(sortExprs: Column*): DataFrame = sort(sortExprs : _*) + def orderBy(sortExprs: Column*): DataFrame = sort(sortExprs: _*) /** * Selects column based on the column name and return it as a [[Column]]. @@ -720,7 +720,7 @@ class DataFrame private[sql]( * @since 1.3.0 */ @scala.annotation.varargs - def select(col: String, cols: String*): DataFrame = select((col +: cols).map(Column(_)) : _*) + def select(col: String, cols: String*): DataFrame = select((col +: cols).map(Column(_)): _*) /** * Selects a set of SQL expressions. This is a variant of `select` that accepts @@ -948,7 +948,7 @@ class DataFrame private[sql]( * @since 1.3.0 */ def agg(aggExpr: (String, String), aggExprs: (String, String)*): DataFrame = { - groupBy().agg(aggExpr, aggExprs : _*) + groupBy().agg(aggExpr, aggExprs: _*) } /** @@ -986,7 +986,7 @@ class DataFrame private[sql]( * @since 1.3.0 */ @scala.annotation.varargs - def agg(expr: Column, exprs: Column*): DataFrame = groupBy().agg(expr, exprs : _*) + def agg(expr: Column, exprs: Column*): DataFrame = groupBy().agg(expr, exprs: _*) /** * Returns a new [[DataFrame]] by taking the first `n` rows. The difference between this function @@ -1118,7 +1118,7 @@ class DataFrame private[sql]( * @group dfops * @since 1.3.0 */ - def explode[A <: Product : TypeTag](input: Column*)(f: Row => TraversableOnce[A]): DataFrame = { + def explode[A <: Product: TypeTag](input: Column*)(f: Row => TraversableOnce[A]): DataFrame = { val schema = ScalaReflection.schemaFor[A].dataType.asInstanceOf[StructType] val elementTypes = schema.toAttributes.map { @@ -1147,7 +1147,7 @@ class DataFrame private[sql]( * @group dfops * @since 1.3.0 */ - def explode[A, B : TypeTag](inputColumn: String, outputColumn: String)(f: A => TraversableOnce[B]) + def explode[A, B: TypeTag](inputColumn: String, outputColumn: String)(f: A => TraversableOnce[B]) : DataFrame = { val dataType = ScalaReflection.schemaFor[B].dataType val attributes = AttributeReference(outputColumn, dataType)() :: Nil @@ -1186,7 +1186,7 @@ class DataFrame private[sql]( Column(field) } } - select(columns : _*) + select(columns: _*) } else { select(Column("*"), col.as(colName)) } @@ -1207,7 +1207,7 @@ class DataFrame private[sql]( Column(field) } } - select(columns : _*) + select(columns: _*) } else { select(Column("*"), col.as(colName, metadata)) } @@ -1231,7 +1231,7 @@ class DataFrame private[sql]( Column(col) } } - select(columns : _*) + select(columns: _*) } else { this } @@ -1244,7 +1244,7 @@ class DataFrame private[sql]( * @since 1.4.0 */ def drop(colName: String): DataFrame = { - drop(Seq(colName) : _*) + drop(Seq(colName): _*) } /** @@ -1283,7 +1283,7 @@ class DataFrame private[sql]( val colsAfterDrop = attrs.filter { attr => attr != expression }.map(attr => Column(attr)) - select(colsAfterDrop : _*) + select(colsAfterDrop: _*) } /** @@ -1479,7 +1479,7 @@ class DataFrame private[sql]( * @group action * @since 1.6.0 */ - def takeAsList(n: Int): java.util.List[Row] = java.util.Arrays.asList(take(n) : _*) + def takeAsList(n: Int): java.util.List[Row] = java.util.Arrays.asList(take(n): _*) /** * Returns an array that contains all of [[Row]]s in this [[DataFrame]]. @@ -1505,7 +1505,7 @@ class DataFrame private[sql]( */ def collectAsList(): java.util.List[Row] = withCallback("collectAsList", this) { _ => withNewExecutionId { - java.util.Arrays.asList(rdd.collect() : _*) + java.util.Arrays.asList(rdd.collect(): _*) } } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameHolder.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameHolder.scala index 3b30337f1f..4441a634be 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameHolder.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameHolder.scala @@ -33,5 +33,5 @@ case class DataFrameHolder private[sql](private val df: DataFrame) { // `rdd.toDF("1")` as invoking this toDF and then apply on the returned DataFrame. def toDF(): DataFrame = df - def toDF(colNames: String*): DataFrame = df.toDF(colNames : _*) + def toDF(colNames: String*): DataFrame = df.toDF(colNames: _*) } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala index f7be5f6b37..43500b09e0 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala @@ -164,7 +164,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) { df.col(f.name) } } - df.select(projections : _*) + df.select(projections: _*) } /** @@ -191,7 +191,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) { df.col(f.name) } } - df.select(projections : _*) + df.select(projections: _*) } /** @@ -364,7 +364,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) { df.col(f.name) } } - df.select(projections : _*) + df.select(projections: _*) } private def fill0(values: Seq[(String, Any)]): DataFrame = { @@ -395,7 +395,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) { } }.getOrElse(df.col(f.name)) } - df.select(projections : _*) + df.select(projections: _*) } /** diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameReader.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameReader.scala index d948e48942..1ed451d5a8 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameReader.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameReader.scala @@ -203,7 +203,7 @@ class DataFrameReader private[sql](sqlContext: SQLContext) extends Logging { predicates: Array[String], connectionProperties: Properties): DataFrame = { val parts: Array[Partition] = predicates.zipWithIndex.map { case (part, i) => - JDBCPartition(part, i) : Partition + JDBCPartition(part, i): Partition } jdbc(url, table, parts, connectionProperties) } @@ -262,7 +262,7 @@ class DataFrameReader private[sql](sqlContext: SQLContext) extends Logging { * * @since 1.6.0 */ - def json(paths: String*): DataFrame = format("json").load(paths : _*) + def json(paths: String*): DataFrame = format("json").load(paths: _*) /** * Loads an `JavaRDD[String]` storing JSON objects (one object per record) and @@ -355,7 +355,7 @@ class DataFrameReader private[sql](sqlContext: SQLContext) extends Logging { * @since 1.6.0 */ @scala.annotation.varargs - def text(paths: String*): DataFrame = format("text").load(paths : _*) + def text(paths: String*): DataFrame = format("text").load(paths: _*) /////////////////////////////////////////////////////////////////////////////////////// // Builder pattern config options diff --git a/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala b/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala index 42f01e9359..9ffb5b94b2 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala @@ -131,7 +131,7 @@ class Dataset[T] private[sql]( * along with `alias` or `as` to rearrange or rename as required. * @since 1.6.0 */ - def as[U : Encoder]: Dataset[U] = { + def as[U: Encoder]: Dataset[U] = { new Dataset(sqlContext, queryExecution, encoderFor[U]) } @@ -318,7 +318,7 @@ class Dataset[T] private[sql]( * Returns a new [[Dataset]] that contains the result of applying `func` to each element. * @since 1.6.0 */ - def map[U : Encoder](func: T => U): Dataset[U] = mapPartitions(_.map(func)) + def map[U: Encoder](func: T => U): Dataset[U] = mapPartitions(_.map(func)) /** * (Java-specific) @@ -333,7 +333,7 @@ class Dataset[T] private[sql]( * Returns a new [[Dataset]] that contains the result of applying `func` to each partition. * @since 1.6.0 */ - def mapPartitions[U : Encoder](func: Iterator[T] => Iterator[U]): Dataset[U] = { + def mapPartitions[U: Encoder](func: Iterator[T] => Iterator[U]): Dataset[U] = { new Dataset[U]( sqlContext, MapPartitions[T, U]( @@ -360,7 +360,7 @@ class Dataset[T] private[sql]( * and then flattening the results. * @since 1.6.0 */ - def flatMap[U : Encoder](func: T => TraversableOnce[U]): Dataset[U] = + def flatMap[U: Encoder](func: T => TraversableOnce[U]): Dataset[U] = mapPartitions(_.flatMap(func)) /** @@ -432,7 +432,7 @@ class Dataset[T] private[sql]( * Returns a [[GroupedDataset]] where the data is grouped by the given key `func`. * @since 1.6.0 */ - def groupBy[K : Encoder](func: T => K): GroupedDataset[K, T] = { + def groupBy[K: Encoder](func: T => K): GroupedDataset[K, T] = { val inputPlan = logicalPlan val withGroupingKey = AppendColumns(func, resolvedTEncoder, inputPlan) val executed = sqlContext.executePlan(withGroupingKey) @@ -566,14 +566,14 @@ class Dataset[T] private[sql]( * Returns a new [[Dataset]] by sampling a fraction of records. * @since 1.6.0 */ - def sample(withReplacement: Boolean, fraction: Double, seed: Long) : Dataset[T] = + def sample(withReplacement: Boolean, fraction: Double, seed: Long): Dataset[T] = withPlan(Sample(0.0, fraction, withReplacement, seed, _)) /** * Returns a new [[Dataset]] by sampling a fraction of records, using a random seed. * @since 1.6.0 */ - def sample(withReplacement: Boolean, fraction: Double) : Dataset[T] = { + def sample(withReplacement: Boolean, fraction: Double): Dataset[T] = { sample(withReplacement, fraction, Utils.random.nextLong) } @@ -731,7 +731,7 @@ class Dataset[T] private[sql]( * a very large `num` can crash the driver process with OutOfMemoryError. * @since 1.6.0 */ - def takeAsList(num: Int): java.util.List[T] = java.util.Arrays.asList(take(num) : _*) + def takeAsList(num: Int): java.util.List[T] = java.util.Arrays.asList(take(num): _*) /** * Persist this [[Dataset]] with the default storage level (`MEMORY_AND_DISK`). @@ -786,7 +786,7 @@ class Dataset[T] private[sql]( private[sql] def withPlan(f: LogicalPlan => LogicalPlan): Dataset[T] = new Dataset[T](sqlContext, sqlContext.executePlan(f(logicalPlan)), tEncoder) - private[sql] def withPlan[R : Encoder]( + private[sql] def withPlan[R: Encoder]( other: Dataset[_])( f: (LogicalPlan, LogicalPlan) => LogicalPlan): Dataset[R] = new Dataset[R](sqlContext, f(logicalPlan, other.logicalPlan)) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/GroupedData.scala b/sql/core/src/main/scala/org/apache/spark/sql/GroupedData.scala index c74ef2c035..f5cbf013bc 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/GroupedData.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/GroupedData.scala @@ -229,7 +229,7 @@ class GroupedData protected[sql]( */ @scala.annotation.varargs def mean(colNames: String*): DataFrame = { - aggregateNumericColumns(colNames : _*)(Average) + aggregateNumericColumns(colNames: _*)(Average) } /** @@ -241,7 +241,7 @@ class GroupedData protected[sql]( */ @scala.annotation.varargs def max(colNames: String*): DataFrame = { - aggregateNumericColumns(colNames : _*)(Max) + aggregateNumericColumns(colNames: _*)(Max) } /** @@ -253,7 +253,7 @@ class GroupedData protected[sql]( */ @scala.annotation.varargs def avg(colNames: String*): DataFrame = { - aggregateNumericColumns(colNames : _*)(Average) + aggregateNumericColumns(colNames: _*)(Average) } /** @@ -265,7 +265,7 @@ class GroupedData protected[sql]( */ @scala.annotation.varargs def min(colNames: String*): DataFrame = { - aggregateNumericColumns(colNames : _*)(Min) + aggregateNumericColumns(colNames: _*)(Min) } /** @@ -277,7 +277,7 @@ class GroupedData protected[sql]( */ @scala.annotation.varargs def sum(colNames: String*): DataFrame = { - aggregateNumericColumns(colNames : _*)(Sum) + aggregateNumericColumns(colNames: _*)(Sum) } /** diff --git a/sql/core/src/main/scala/org/apache/spark/sql/GroupedDataset.scala b/sql/core/src/main/scala/org/apache/spark/sql/GroupedDataset.scala index a819ddceb1..12179367fa 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/GroupedDataset.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/GroupedDataset.scala @@ -73,7 +73,7 @@ class GroupedDataset[K, V] private[sql]( * * @since 1.6.0 */ - def keyAs[L : Encoder]: GroupedDataset[L, V] = + def keyAs[L: Encoder]: GroupedDataset[L, V] = new GroupedDataset( encoderFor[L], unresolvedVEncoder, @@ -110,7 +110,7 @@ class GroupedDataset[K, V] private[sql]( * * @since 1.6.0 */ - def flatMapGroups[U : Encoder](f: (K, Iterator[V]) => TraversableOnce[U]): Dataset[U] = { + def flatMapGroups[U: Encoder](f: (K, Iterator[V]) => TraversableOnce[U]): Dataset[U] = { new Dataset[U]( sqlContext, MapGroups( @@ -158,7 +158,7 @@ class GroupedDataset[K, V] private[sql]( * * @since 1.6.0 */ - def mapGroups[U : Encoder](f: (K, Iterator[V]) => U): Dataset[U] = { + def mapGroups[U: Encoder](f: (K, Iterator[V]) => U): Dataset[U] = { val func = (key: K, it: Iterator[V]) => Iterator(f(key, it)) flatMapGroups(func) } @@ -302,7 +302,7 @@ class GroupedDataset[K, V] private[sql]( * * @since 1.6.0 */ - def cogroup[U, R : Encoder]( + def cogroup[U, R: Encoder]( other: GroupedDataset[K, U])( f: (K, Iterator[V], Iterator[U]) => TraversableOnce[R]): Dataset[R] = { new Dataset[R]( diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala index e827427c19..61c74f8340 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala @@ -409,7 +409,7 @@ class SQLContext private[sql]( * @since 1.3.0 */ @Experimental - def createDataFrame[A <: Product : TypeTag](rdd: RDD[A]): DataFrame = { + def createDataFrame[A <: Product: TypeTag](rdd: RDD[A]): DataFrame = { SQLContext.setActive(self) val schema = ScalaReflection.schemaFor[A].dataType.asInstanceOf[StructType] val attributeSeq = schema.toAttributes @@ -425,7 +425,7 @@ class SQLContext private[sql]( * @since 1.3.0 */ @Experimental - def createDataFrame[A <: Product : TypeTag](data: Seq[A]): DataFrame = { + def createDataFrame[A <: Product: TypeTag](data: Seq[A]): DataFrame = { SQLContext.setActive(self) val schema = ScalaReflection.schemaFor[A].dataType.asInstanceOf[StructType] val attributeSeq = schema.toAttributes @@ -498,7 +498,7 @@ class SQLContext private[sql]( } - def createDataset[T : Encoder](data: Seq[T]): Dataset[T] = { + def createDataset[T: Encoder](data: Seq[T]): Dataset[T] = { val enc = encoderFor[T] val attributes = enc.schema.toAttributes val encoded = data.map(d => enc.toRow(d).copy()) @@ -507,7 +507,7 @@ class SQLContext private[sql]( new Dataset[T](this, plan) } - def createDataset[T : Encoder](data: RDD[T]): Dataset[T] = { + def createDataset[T: Encoder](data: RDD[T]): Dataset[T] = { val enc = encoderFor[T] val attributes = enc.schema.toAttributes val encoded = data.map(d => enc.toRow(d)) @@ -516,7 +516,7 @@ class SQLContext private[sql]( new Dataset[T](this, plan) } - def createDataset[T : Encoder](data: java.util.List[T]): Dataset[T] = { + def createDataset[T: Encoder](data: java.util.List[T]): Dataset[T] = { createDataset(data.asScala) } @@ -945,7 +945,7 @@ class SQLContext private[sql]( } } - // Register a succesfully instantiatd context to the singleton. This should be at the end of + // Register a successfully instantiated context to the singleton. This should be at the end of // the class definition so that the singleton is updated only if there is no exception in the // construction of the instance. sparkContext.addSparkListener(new SparkListener { diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLImplicits.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLImplicits.scala index ab414799f1..a7f7997df1 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SQLImplicits.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLImplicits.scala @@ -37,7 +37,7 @@ abstract class SQLImplicits { protected def _sqlContext: SQLContext /** @since 1.6.0 */ - implicit def newProductEncoder[T <: Product : TypeTag]: Encoder[T] = ExpressionEncoder() + implicit def newProductEncoder[T <: Product: TypeTag]: Encoder[T] = ExpressionEncoder() /** @since 1.6.0 */ implicit def newIntEncoder: Encoder[Int] = ExpressionEncoder() @@ -67,7 +67,7 @@ abstract class SQLImplicits { * Creates a [[Dataset]] from an RDD. * @since 1.6.0 */ - implicit def rddToDatasetHolder[T : Encoder](rdd: RDD[T]): DatasetHolder[T] = { + implicit def rddToDatasetHolder[T: Encoder](rdd: RDD[T]): DatasetHolder[T] = { DatasetHolder(_sqlContext.createDataset(rdd)) } @@ -75,7 +75,7 @@ abstract class SQLImplicits { * Creates a [[Dataset]] from a local Seq. * @since 1.6.0 */ - implicit def localSeqToDatasetHolder[T : Encoder](s: Seq[T]): DatasetHolder[T] = { + implicit def localSeqToDatasetHolder[T: Encoder](s: Seq[T]): DatasetHolder[T] = { DatasetHolder(_sqlContext.createDataset(s)) } @@ -89,7 +89,7 @@ abstract class SQLImplicits { * Creates a DataFrame from an RDD of Product (e.g. case classes, tuples). * @since 1.3.0 */ - implicit def rddToDataFrameHolder[A <: Product : TypeTag](rdd: RDD[A]): DataFrameHolder = { + implicit def rddToDataFrameHolder[A <: Product: TypeTag](rdd: RDD[A]): DataFrameHolder = { DataFrameHolder(_sqlContext.createDataFrame(rdd)) } @@ -97,7 +97,7 @@ abstract class SQLImplicits { * Creates a DataFrame from a local Seq of Product. * @since 1.3.0 */ - implicit def localSeqToDataFrameHolder[A <: Product : TypeTag](data: Seq[A]): DataFrameHolder = + implicit def localSeqToDataFrameHolder[A <: Product: TypeTag](data: Seq[A]): DataFrameHolder = { DataFrameHolder(_sqlContext.createDataFrame(data)) } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/api/r/SQLUtils.scala b/sql/core/src/main/scala/org/apache/spark/sql/api/r/SQLUtils.scala index d912aeb70d..a8e6a40169 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/api/r/SQLUtils.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/api/r/SQLUtils.scala @@ -39,7 +39,7 @@ private[r] object SQLUtils { new JavaSparkContext(sqlCtx.sparkContext) } - def createStructType(fields : Seq[StructField]): StructType = { + def createStructType(fields: Seq[StructField]): StructType = { StructType(fields) } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/Exchange.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/Exchange.scala index 6b10057707..058d147c7d 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/Exchange.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/Exchange.scala @@ -223,7 +223,7 @@ case class Exchange( new ShuffledRowRDD(shuffleDependency, specifiedPartitionStartIndices) } - protected override def doExecute(): RDD[InternalRow] = attachTree(this , "execute") { + protected override def doExecute(): RDD[InternalRow] = attachTree(this, "execute") { coordinator match { case Some(exchangeCoordinator) => val shuffleRDD = exchangeCoordinator.postShuffleRDD(this) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/Queryable.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/Queryable.scala index 38263af0f7..bb55161477 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/Queryable.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/Queryable.scala @@ -71,7 +71,7 @@ private[sql] trait Queryable { private[sql] def formatString ( rows: Seq[Seq[String]], numRows: Int, - hasMoreData : Boolean, + hasMoreData: Boolean, truncate: Boolean = true): String = { val sb = new StringBuilder val numCols = schema.fieldNames.length diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/TypedAggregateExpression.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/TypedAggregateExpression.scala index 1df38f7ff5..b5ac530444 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/TypedAggregateExpression.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/TypedAggregateExpression.scala @@ -29,7 +29,7 @@ import org.apache.spark.sql.expressions.Aggregator import org.apache.spark.sql.types._ object TypedAggregateExpression { - def apply[A, B : Encoder, C : Encoder]( + def apply[A, B: Encoder, C: Encoder]( aggregator: Aggregator[A, B, C]): TypedAggregateExpression = { new TypedAggregateExpression( aggregator.asInstanceOf[Aggregator[Any, Any, Any]], diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/SqlNewHadoopRDD.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/SqlNewHadoopRDD.scala index d45d2db62f..d5e0d80076 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/SqlNewHadoopRDD.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/SqlNewHadoopRDD.scala @@ -256,7 +256,7 @@ private[spark] class SqlNewHadoopRDD[V: ClassTag]( val infos = c.newGetLocationInfo.invoke(split).asInstanceOf[Array[AnyRef]] Some(HadoopRDD.convertSplitLocationInfo(infos)) } catch { - case e : Exception => + case e: Exception => logDebug("Failed to use InputSplit#getLocationInfo.", e) None } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/parquet/CatalystSchemaConverter.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/parquet/CatalystSchemaConverter.scala index fb97a03df6..c4b125e9d5 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/parquet/CatalystSchemaConverter.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/parquet/CatalystSchemaConverter.scala @@ -557,7 +557,7 @@ private[parquet] object CatalystSchemaConverter { } } - private def computeMinBytesForPrecision(precision : Int) : Int = { + private def computeMinBytesForPrecision(precision: Int): Int = { var numBytes = 1 while (math.pow(2.0, 8 * numBytes - 1) < math.pow(10.0, precision)) { numBytes += 1 diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/joins/CartesianProduct.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/joins/CartesianProduct.scala index 93d32e1fb9..a567457dba 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/joins/CartesianProduct.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/joins/CartesianProduct.scala @@ -34,7 +34,7 @@ import org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter * materialize the right RDD (in case of the right RDD is nondeterministic). */ private[spark] -class UnsafeCartesianRDD(left : RDD[UnsafeRow], right : RDD[UnsafeRow], numFieldsOfRight: Int) +class UnsafeCartesianRDD(left: RDD[UnsafeRow], right: RDD[UnsafeRow], numFieldsOfRight: Int) extends CartesianRDD[UnsafeRow, UnsafeRow](left.sparkContext, left, right) { override def compute(split: Partition, context: TaskContext): Iterator[(UnsafeRow, UnsafeRow)] = { diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/metric/SQLMetrics.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/metric/SQLMetrics.scala index 52735c9d7f..8c68d9ee0a 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/metric/SQLMetrics.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/metric/SQLMetrics.scala @@ -64,7 +64,7 @@ private[sql] trait SQLMetricValue[T] extends Serializable { /** * A wrapper of Long to avoid boxing and unboxing when using Accumulator */ -private[sql] class LongSQLMetricValue(private var _value : Long) extends SQLMetricValue[Long] { +private[sql] class LongSQLMetricValue(private var _value: Long) extends SQLMetricValue[Long] { def add(incr: Long): LongSQLMetricValue = { _value += incr diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/FrequentItems.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/FrequentItems.scala index a191759813..a4cb54e2bf 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/FrequentItems.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/FrequentItems.scala @@ -94,7 +94,7 @@ private[sql] object FrequentItems extends Logging { (name, originalSchema.fields(index).dataType) }.toArray - val freqItems = df.select(cols.map(Column(_)) : _*).rdd.aggregate(countMaps)( + val freqItems = df.select(cols.map(Column(_)): _*).rdd.aggregate(countMaps)( seqOp = (counts, row) => { var i = 0 while (i < numCols) { @@ -115,7 +115,7 @@ private[sql] object FrequentItems extends Logging { } ) val justItems = freqItems.map(m => m.baseMap.keys.toArray) - val resultRow = Row(justItems : _*) + val resultRow = Row(justItems: _*) // append frequent Items to the column name for easy debugging val outputCols = colInfo.map { v => StructField(v._1 + "_freqItems", ArrayType(v._2, false)) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/expressions/Window.scala b/sql/core/src/main/scala/org/apache/spark/sql/expressions/Window.scala index e9b60841fc..05a9f377b9 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/expressions/Window.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/expressions/Window.scala @@ -44,7 +44,7 @@ object Window { */ @scala.annotation.varargs def partitionBy(colName: String, colNames: String*): WindowSpec = { - spec.partitionBy(colName, colNames : _*) + spec.partitionBy(colName, colNames: _*) } /** @@ -53,7 +53,7 @@ object Window { */ @scala.annotation.varargs def partitionBy(cols: Column*): WindowSpec = { - spec.partitionBy(cols : _*) + spec.partitionBy(cols: _*) } /** @@ -62,7 +62,7 @@ object Window { */ @scala.annotation.varargs def orderBy(colName: String, colNames: String*): WindowSpec = { - spec.orderBy(colName, colNames : _*) + spec.orderBy(colName, colNames: _*) } /** @@ -71,7 +71,7 @@ object Window { */ @scala.annotation.varargs def orderBy(cols: Column*): WindowSpec = { - spec.orderBy(cols : _*) + spec.orderBy(cols: _*) } private def spec: WindowSpec = { diff --git a/sql/core/src/main/scala/org/apache/spark/sql/functions.scala b/sql/core/src/main/scala/org/apache/spark/sql/functions.scala index 592d79df31..1ac62883a6 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/functions.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/functions.scala @@ -306,7 +306,7 @@ object functions extends LegacyFunctions { */ @scala.annotation.varargs def countDistinct(columnName: String, columnNames: String*): Column = - countDistinct(Column(columnName), columnNames.map(Column.apply) : _*) + countDistinct(Column(columnName), columnNames.map(Column.apply): _*) /** * Aggregate function: returns the first value in a group. @@ -768,7 +768,7 @@ object functions extends LegacyFunctions { */ @scala.annotation.varargs def array(colName: String, colNames: String*): Column = { - array((colName +: colNames).map(col) : _*) + array((colName +: colNames).map(col): _*) } /** @@ -977,7 +977,7 @@ object functions extends LegacyFunctions { */ @scala.annotation.varargs def struct(colName: String, colNames: String*): Column = { - struct((colName +: colNames).map(col) : _*) + struct((colName +: colNames).map(col): _*) } /** diff --git a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/AggregatedDialect.scala b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/AggregatedDialect.scala index 467d8d62d1..d2c31d6e04 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/AggregatedDialect.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/AggregatedDialect.scala @@ -30,7 +30,7 @@ private class AggregatedDialect(dialects: List[JdbcDialect]) extends JdbcDialect require(dialects.nonEmpty) - override def canHandle(url : String): Boolean = + override def canHandle(url: String): Boolean = dialects.map(_.canHandle(url)).reduce(_ && _) override def getCatalystType( diff --git a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JdbcDialects.scala b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JdbcDialects.scala index ca2d909e2c..8d58321d48 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JdbcDialects.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JdbcDialects.scala @@ -31,7 +31,7 @@ import org.apache.spark.sql.types._ * send a null value to the database. */ @DeveloperApi -case class JdbcType(databaseTypeDefinition : String, jdbcNullType : Int) +case class JdbcType(databaseTypeDefinition: String, jdbcNullType: Int) /** * :: DeveloperApi :: @@ -60,7 +60,7 @@ abstract class JdbcDialect extends Serializable { * @return True if the dialect can be applied on the given jdbc url. * @throws NullPointerException if the url is null. */ - def canHandle(url : String): Boolean + def canHandle(url: String): Boolean /** * Get the custom datatype mapping for the given jdbc meta information. @@ -130,7 +130,7 @@ object JdbcDialects { * * @param dialect The new dialect. */ - def registerDialect(dialect: JdbcDialect) : Unit = { + def registerDialect(dialect: JdbcDialect): Unit = { dialects = dialect :: dialects.filterNot(_ == dialect) } @@ -139,7 +139,7 @@ object JdbcDialects { * * @param dialect The jdbc dialect. */ - def unregisterDialect(dialect : JdbcDialect) : Unit = { + def unregisterDialect(dialect: JdbcDialect): Unit = { dialects = dialects.filterNot(_ == dialect) } @@ -169,5 +169,5 @@ object JdbcDialects { * NOOP dialect object, always returning the neutral element. */ private object NoopDialect extends JdbcDialect { - override def canHandle(url : String): Boolean = true + override def canHandle(url: String): Boolean = true } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/MySQLDialect.scala b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/MySQLDialect.scala index e1717049f3..faae54e605 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/MySQLDialect.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/MySQLDialect.scala @@ -23,10 +23,13 @@ import org.apache.spark.sql.types.{BooleanType, DataType, LongType, MetadataBuil private case object MySQLDialect extends JdbcDialect { - override def canHandle(url : String): Boolean = url.startsWith("jdbc:mysql") + override def canHandle(url: String): Boolean = url.startsWith("jdbc:mysql") override def getCatalystType( - sqlType: Int, typeName: String, size: Int, md: MetadataBuilder): Option[DataType] = { + sqlType: Int, + typeName: String, + size: Int, + md: MetadataBuilder): Option[DataType] = { if (sqlType == Types.VARBINARY && typeName.equals("BIT") && size != 1) { // This could instead be a BinaryType if we'd rather return bit-vectors of up to 64 bits as // byte arrays instead of longs. diff --git a/sql/core/src/test/scala/org/apache/spark/sql/DatasetAggregatorSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/DatasetAggregatorSuite.scala index 3258f3782d..f952fc07fd 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/DatasetAggregatorSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/DatasetAggregatorSuite.scala @@ -24,7 +24,7 @@ import org.apache.spark.sql.functions._ import org.apache.spark.sql.test.SharedSQLContext /** An `Aggregator` that adds up any numeric type returned by the given function. */ -class SumOf[I, N : Numeric](f: I => N) extends Aggregator[I, N, N] { +class SumOf[I, N: Numeric](f: I => N) extends Aggregator[I, N, N] { val numeric = implicitly[Numeric[N]] override def zero: N = numeric.zero @@ -113,7 +113,7 @@ class DatasetAggregatorSuite extends QueryTest with SharedSQLContext { import testImplicits._ - def sum[I, N : Numeric : Encoder](f: I => N): TypedColumn[I, N] = + def sum[I, N: Numeric: Encoder](f: I => N): TypedColumn[I, N] = new SumOf(f).toColumn test("typed aggregation: TypedAggregator") { diff --git a/sql/core/src/test/scala/org/apache/spark/sql/DatasetCacheSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/DatasetCacheSuite.scala index 3a283a4e1f..848f1af655 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/DatasetCacheSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/DatasetCacheSuite.scala @@ -27,7 +27,7 @@ class DatasetCacheSuite extends QueryTest with SharedSQLContext { import testImplicits._ test("persist and unpersist") { - val ds = Seq(("a", 1) , ("b", 2), ("c", 3)).toDS().select(expr("_2 + 1").as[Int]) + val ds = Seq(("a", 1), ("b", 2), ("c", 3)).toDS().select(expr("_2 + 1").as[Int]) val cached = ds.cache() // count triggers the caching action. It should not throw. cached.count() diff --git a/sql/core/src/test/scala/org/apache/spark/sql/DatasetSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/DatasetSuite.scala index 53b5f45c2d..a3ed2e0616 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/DatasetSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/DatasetSuite.scala @@ -30,7 +30,7 @@ class DatasetSuite extends QueryTest with SharedSQLContext { import testImplicits._ test("toDS") { - val data = Seq(("a", 1) , ("b", 2), ("c", 3)) + val data = Seq(("a", 1), ("b", 2), ("c", 3)) checkAnswer( data.toDS(), data: _*) @@ -87,7 +87,7 @@ class DatasetSuite extends QueryTest with SharedSQLContext { } test("as case class / collect") { - val ds = Seq(("a", 1) , ("b", 2), ("c", 3)).toDF("a", "b").as[ClassData] + val ds = Seq(("a", 1), ("b", 2), ("c", 3)).toDF("a", "b").as[ClassData] checkAnswer( ds, ClassData("a", 1), ClassData("b", 2), ClassData("c", 3)) @@ -105,7 +105,7 @@ class DatasetSuite extends QueryTest with SharedSQLContext { } test("map") { - val ds = Seq(("a", 1) , ("b", 2), ("c", 3)).toDS() + val ds = Seq(("a", 1), ("b", 2), ("c", 3)).toDS() checkAnswer( ds.map(v => (v._1, v._2 + 1)), ("a", 2), ("b", 3), ("c", 4)) @@ -124,23 +124,23 @@ class DatasetSuite extends QueryTest with SharedSQLContext { } test("select") { - val ds = Seq(("a", 1) , ("b", 2), ("c", 3)).toDS() + val ds = Seq(("a", 1), ("b", 2), ("c", 3)).toDS() checkAnswer( ds.select(expr("_2 + 1").as[Int]), 2, 3, 4) } test("select 2") { - val ds = Seq(("a", 1) , ("b", 2), ("c", 3)).toDS() + val ds = Seq(("a", 1), ("b", 2), ("c", 3)).toDS() checkAnswer( ds.select( expr("_1").as[String], - expr("_2").as[Int]) : Dataset[(String, Int)], + expr("_2").as[Int]): Dataset[(String, Int)], ("a", 1), ("b", 2), ("c", 3)) } test("select 2, primitive and tuple") { - val ds = Seq(("a", 1) , ("b", 2), ("c", 3)).toDS() + val ds = Seq(("a", 1), ("b", 2), ("c", 3)).toDS() checkAnswer( ds.select( expr("_1").as[String], @@ -149,7 +149,7 @@ class DatasetSuite extends QueryTest with SharedSQLContext { } test("select 2, primitive and class") { - val ds = Seq(("a", 1) , ("b", 2), ("c", 3)).toDS() + val ds = Seq(("a", 1), ("b", 2), ("c", 3)).toDS() checkAnswer( ds.select( expr("_1").as[String], @@ -158,7 +158,7 @@ class DatasetSuite extends QueryTest with SharedSQLContext { } test("select 2, primitive and class, fields reordered") { - val ds = Seq(("a", 1) , ("b", 2), ("c", 3)).toDS() + val ds = Seq(("a", 1), ("b", 2), ("c", 3)).toDS() checkDecoding( ds.select( expr("_1").as[String], @@ -167,28 +167,28 @@ class DatasetSuite extends QueryTest with SharedSQLContext { } test("filter") { - val ds = Seq(("a", 1) , ("b", 2), ("c", 3)).toDS() + val ds = Seq(("a", 1), ("b", 2), ("c", 3)).toDS() checkAnswer( ds.filter(_._1 == "b"), ("b", 2)) } test("foreach") { - val ds = Seq(("a", 1) , ("b", 2), ("c", 3)).toDS() + val ds = Seq(("a", 1), ("b", 2), ("c", 3)).toDS() val acc = sparkContext.accumulator(0) ds.foreach(v => acc += v._2) assert(acc.value == 6) } test("foreachPartition") { - val ds = Seq(("a", 1) , ("b", 2), ("c", 3)).toDS() + val ds = Seq(("a", 1), ("b", 2), ("c", 3)).toDS() val acc = sparkContext.accumulator(0) ds.foreachPartition(_.foreach(v => acc += v._2)) assert(acc.value == 6) } test("reduce") { - val ds = Seq(("a", 1) , ("b", 2), ("c", 3)).toDS() + val ds = Seq(("a", 1), ("b", 2), ("c", 3)).toDS() assert(ds.reduce((a, b) => ("sum", a._2 + b._2)) == ("sum", 6)) } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/json/JsonSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/json/JsonSuite.scala index 4ab148065a..860e07c68c 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/json/JsonSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/json/JsonSuite.scala @@ -206,7 +206,7 @@ class JsonSuite extends QueryTest with SharedSQLContext with TestJsonData { StructType( StructField("f1", IntegerType, true) :: StructField("f2", IntegerType, true) :: Nil), - StructType(StructField("f1", LongType, true) :: Nil) , + StructType(StructField("f1", LongType, true) :: Nil), StructType( StructField("f1", LongType, true) :: StructField("f2", IntegerType, true) :: Nil)) diff --git a/sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/parquet/ParquetIOSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/parquet/ParquetIOSuite.scala index ab48e971b5..f2e0a868f4 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/parquet/ParquetIOSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/parquet/ParquetIOSuite.scala @@ -72,7 +72,7 @@ class ParquetIOSuite extends QueryTest with ParquetTest with SharedSQLContext { /** * Writes `data` to a Parquet file, reads it back and check file contents. */ - protected def checkParquetFile[T <: Product : ClassTag: TypeTag](data: Seq[T]): Unit = { + protected def checkParquetFile[T <: Product: ClassTag: TypeTag](data: Seq[T]): Unit = { withParquetDataFrame(data)(r => checkAnswer(r, data.map(Row.fromTuple))) } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/jdbc/JDBCSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/jdbc/JDBCSuite.scala index 1fa22e2933..984e3fbc05 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/jdbc/JDBCSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/jdbc/JDBCSuite.scala @@ -46,7 +46,7 @@ class JDBCSuite extends SparkFunSuite val testBytes = Array[Byte](99.toByte, 134.toByte, 135.toByte, 200.toByte, 205.toByte) val testH2Dialect = new JdbcDialect { - override def canHandle(url: String) : Boolean = url.startsWith("jdbc:h2") + override def canHandle(url: String): Boolean = url.startsWith("jdbc:h2") override def getCatalystType( sqlType: Int, typeName: String, size: Int, md: MetadataBuilder): Option[DataType] = Some(StringType) @@ -489,7 +489,7 @@ class JDBCSuite extends SparkFunSuite test("Aggregated dialects") { val agg = new AggregatedDialect(List(new JdbcDialect { - override def canHandle(url: String) : Boolean = url.startsWith("jdbc:h2:") + override def canHandle(url: String): Boolean = url.startsWith("jdbc:h2:") override def getCatalystType( sqlType: Int, typeName: String, size: Int, md: MetadataBuilder): Option[DataType] = if (sqlType % 2 == 0) { diff --git a/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/ReflectionUtils.scala b/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/ReflectionUtils.scala index 599294dfbb..d1d8a68f6d 100644 --- a/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/ReflectionUtils.scala +++ b/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/ReflectionUtils.scala @@ -18,7 +18,7 @@ package org.apache.spark.sql.hive.thriftserver private[hive] object ReflectionUtils { - def setSuperField(obj : Object, fieldName: String, fieldValue: Object) { + def setSuperField(obj: Object, fieldName: String, fieldValue: Object) { setAncestorField(obj, 1, fieldName, fieldValue) } diff --git a/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/SparkSQLCLIDriver.scala b/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/SparkSQLCLIDriver.scala index 03bc830df2..9f9efe33e1 100644 --- a/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/SparkSQLCLIDriver.scala +++ b/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/SparkSQLCLIDriver.scala @@ -325,7 +325,7 @@ private[hive] class SparkSQLCLIDriver extends CliDriver with Logging { if (ret != 0) { // For analysis exception, only the error is printed out to the console. rc.getException() match { - case e : AnalysisException => + case e: AnalysisException => err.println(s"""Error in query: ${e.getMessage}""") case _ => err.println(rc.getErrorMessage()) } @@ -369,7 +369,7 @@ private[hive] class SparkSQLCLIDriver extends CliDriver with Logging { if (counter != 0) { responseMsg += s", Fetched $counter row(s)" } - console.printInfo(responseMsg , null) + console.printInfo(responseMsg, null) // Destroy the driver to release all the locks. driver.destroy() } else { diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala index 7a260e72eb..c9df3c4a82 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala @@ -657,8 +657,8 @@ private[hive] trait HiveInspectors { case DecimalType() => PrimitiveObjectInspectorFactory.javaHiveDecimalObjectInspector case StructType(fields) => ObjectInspectorFactory.getStandardStructObjectInspector( - java.util.Arrays.asList(fields.map(f => f.name) : _*), - java.util.Arrays.asList(fields.map(f => toInspector(f.dataType)) : _*)) + java.util.Arrays.asList(fields.map(f => f.name): _*), + java.util.Arrays.asList(fields.map(f => toInspector(f.dataType)): _*)) } /** @@ -905,8 +905,8 @@ private[hive] trait HiveInspectors { getListTypeInfo(elemType.toTypeInfo) case StructType(fields) => getStructTypeInfo( - java.util.Arrays.asList(fields.map(_.name) : _*), - java.util.Arrays.asList(fields.map(_.dataType.toTypeInfo) : _*)) + java.util.Arrays.asList(fields.map(_.name): _*), + java.util.Arrays.asList(fields.map(_.dataType.toTypeInfo): _*)) case MapType(keyType, valueType, _) => getMapTypeInfo(keyType.toTypeInfo, valueType.toTypeInfo) case BinaryType => binaryTypeInfo diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/hiveUDFs.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/hiveUDFs.scala index 56cab1aee8..912cd41173 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/hiveUDFs.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/hiveUDFs.scala @@ -181,7 +181,7 @@ private[hive] case class HiveSimpleUDF( val ret = FunctionRegistry.invoke( method, function, - conversionHelper.convertIfNecessary(inputs : _*): _*) + conversionHelper.convertIfNecessary(inputs: _*): _*) unwrap(ret, returnInspector) } diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala index 3b867bbfa1..ad28345a66 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala @@ -118,8 +118,8 @@ class HiveInspectorSuite extends SparkFunSuite with HiveInspectors { case DecimalType() => PrimitiveObjectInspectorFactory.writableHiveDecimalObjectInspector case StructType(fields) => ObjectInspectorFactory.getStandardStructObjectInspector( - java.util.Arrays.asList(fields.map(f => f.name) : _*), - java.util.Arrays.asList(fields.map(f => toWritableInspector(f.dataType)) : _*)) + java.util.Arrays.asList(fields.map(f => f.name): _*), + java.util.Arrays.asList(fields.map(f => toWritableInspector(f.dataType)): _*)) } def checkDataType(dt1: Seq[DataType], dt2: Seq[DataType]): Unit = { diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/InsertIntoHiveTableSuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/InsertIntoHiveTableSuite.scala index da7303c791..40e9c9362c 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/InsertIntoHiveTableSuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/InsertIntoHiveTableSuite.scala @@ -154,8 +154,8 @@ class InsertIntoHiveTableSuite extends QueryTest with TestHiveSingleton with Bef } val expected = List( "p1=a"::"p2=b"::"p3=c"::"p4=c"::"p5=2"::Nil, - "p1=a"::"p2=b"::"p3=c"::"p4=c"::"p5=3"::Nil , - "p1=a"::"p2=b"::"p3=c"::"p4=c"::"p5=1"::Nil , + "p1=a"::"p2=b"::"p3=c"::"p4=c"::"p5=3"::Nil, + "p1=a"::"p2=b"::"p3=c"::"p4=c"::"p5=1"::Nil, "p1=a"::"p2=b"::"p3=c"::"p4=c"::"p5=4"::Nil ) assert(listFolders(tmpDir, List()).sortBy(_.toString()) === expected.sortBy(_.toString)) -- GitLab