diff --git a/python/pyspark/ml/clustering.py b/python/pyspark/ml/clustering.py index b90daf16e2f71f14662c2dd4468ff1033f719bad..921633164bacbe3a76faca18a316e90c04d4b7f0 100644 --- a/python/pyspark/ml/clustering.py +++ b/python/pyspark/ml/clustering.py @@ -517,7 +517,7 @@ class LDAModel(JavaModel): def estimatedDocConcentration(self): """ Value for :py:attr:`LDA.docConcentration` estimated from data. - If Online LDA was used and :py:attr::`LDA.optimizeDocConcentration` was set to false, + If Online LDA was used and :py:attr:`LDA.optimizeDocConcentration` was set to false, then this returns the fixed (given) value for the :py:attr:`LDA.docConcentration` parameter. """ return self._call_java("estimatedDocConcentration") diff --git a/python/pyspark/ml/param/_shared_params_code_gen.py b/python/pyspark/ml/param/_shared_params_code_gen.py index 12f14534f4b883b4f22bf6a945ccd7e8463ba95a..c32dcc467d49233dfdea588b1d4d7a8f58eae480 100644 --- a/python/pyspark/ml/param/_shared_params_code_gen.py +++ b/python/pyspark/ml/param/_shared_params_code_gen.py @@ -124,12 +124,12 @@ if __name__ == "__main__": "E.g. 10 means that the cache will get checkpointed every 10 iterations.", None, "TypeConverters.toInt"), ("seed", "random seed.", "hash(type(self).__name__)", "TypeConverters.toInt"), - ("tol", "the convergence tolerance for iterative algorithms.", None, + ("tol", "the convergence tolerance for iterative algorithms (>= 0).", None, "TypeConverters.toFloat"), - ("stepSize", "Step size to be used for each iteration of optimization.", None, + ("stepSize", "Step size to be used for each iteration of optimization (>= 0).", None, "TypeConverters.toFloat"), ("handleInvalid", "how to handle invalid entries. Options are skip (which will filter " + - "out rows with bad values), or error (which will throw an errror). More options may be " + + "out rows with bad values), or error (which will throw an error). More options may be " + "added later.", None, "TypeConverters.toString"), ("elasticNetParam", "the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, " + "the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.", "0.0", diff --git a/python/pyspark/ml/param/shared.py b/python/pyspark/ml/param/shared.py index 9ed63e48ae40d3b19b011e67419946509ea5a48a..c5ccf81540d58c681babce75983ca793475a6692 100644 --- a/python/pyspark/ml/param/shared.py +++ b/python/pyspark/ml/param/shared.py @@ -328,10 +328,10 @@ class HasSeed(Params): class HasTol(Params): """ - Mixin for param tol: the convergence tolerance for iterative algorithms. + Mixin for param tol: the convergence tolerance for iterative algorithms (>= 0). """ - tol = Param(Params._dummy(), "tol", "the convergence tolerance for iterative algorithms.", typeConverter=TypeConverters.toFloat) + tol = Param(Params._dummy(), "tol", "the convergence tolerance for iterative algorithms (>= 0).", typeConverter=TypeConverters.toFloat) def __init__(self): super(HasTol, self).__init__() @@ -351,10 +351,10 @@ class HasTol(Params): class HasStepSize(Params): """ - Mixin for param stepSize: Step size to be used for each iteration of optimization. + Mixin for param stepSize: Step size to be used for each iteration of optimization (>= 0). """ - stepSize = Param(Params._dummy(), "stepSize", "Step size to be used for each iteration of optimization.", typeConverter=TypeConverters.toFloat) + stepSize = Param(Params._dummy(), "stepSize", "Step size to be used for each iteration of optimization (>= 0).", typeConverter=TypeConverters.toFloat) def __init__(self): super(HasStepSize, self).__init__() @@ -374,10 +374,10 @@ class HasStepSize(Params): class HasHandleInvalid(Params): """ - Mixin for param handleInvalid: how to handle invalid entries. Options are skip (which will filter out rows with bad values), or error (which will throw an errror). More options may be added later. + Mixin for param handleInvalid: how to handle invalid entries. Options are skip (which will filter out rows with bad values), or error (which will throw an error). More options may be added later. """ - handleInvalid = Param(Params._dummy(), "handleInvalid", "how to handle invalid entries. Options are skip (which will filter out rows with bad values), or error (which will throw an errror). More options may be added later.", typeConverter=TypeConverters.toString) + handleInvalid = Param(Params._dummy(), "handleInvalid", "how to handle invalid entries. Options are skip (which will filter out rows with bad values), or error (which will throw an error). More options may be added later.", typeConverter=TypeConverters.toString) def __init__(self): super(HasHandleInvalid, self).__init__()