diff --git a/core/pom.xml b/core/pom.xml index 873e8a1d0fe33892296d2fe8fa230eb3c2c8c83a..66c62151feb757d5da56edaf9c53eb8028a4675e 100644 --- a/core/pom.xml +++ b/core/pom.xml @@ -98,6 +98,11 @@ <artifactId>scalacheck_${scala.version}</artifactId> <scope>test</scope> </dependency> + <dependency> + <groupId>org.easymock</groupId> + <artifactId>easymock</artifactId> + <scope>test</scope> + </dependency> <dependency> <groupId>com.novocode</groupId> <artifactId>junit-interface</artifactId> diff --git a/core/src/main/scala/spark/SparkContext.scala b/core/src/main/scala/spark/SparkContext.scala index ddbf8f95d9390bc37654328ccf07950eff6abb3f..0efc00d5dd338aff0832e1f40fde073858e1cd65 100644 --- a/core/src/main/scala/spark/SparkContext.scala +++ b/core/src/main/scala/spark/SparkContext.scala @@ -46,6 +46,7 @@ import spark.scheduler.cluster.{SparkDeploySchedulerBackend, SchedulerBackend, C import spark.scheduler.mesos.{CoarseMesosSchedulerBackend, MesosSchedulerBackend} import storage.BlockManagerUI import util.{MetadataCleaner, TimeStampedHashMap} +import storage.{StorageStatus, StorageUtils, RDDInfo} /** * Main entry point for Spark functionality. A SparkContext represents the connection to a Spark @@ -107,8 +108,9 @@ class SparkContext( // Environment variables to pass to our executors private[spark] val executorEnvs = HashMap[String, String]() + // Note: SPARK_MEM is included for Mesos, but overwritten for standalone mode in ExecutorRunner for (key <- Seq("SPARK_MEM", "SPARK_CLASSPATH", "SPARK_LIBRARY_PATH", "SPARK_JAVA_OPTS", - "SPARK_TESTING")) { + "SPARK_TESTING")) { val value = System.getenv(key) if (value != null) { executorEnvs(key) = value @@ -187,6 +189,7 @@ class SparkContext( taskScheduler.start() private var dagScheduler = new DAGScheduler(taskScheduler) + dagScheduler.start() /** A default Hadoop Configuration for the Hadoop code (e.g. file systems) that we reuse. */ val hadoopConfiguration = { @@ -467,12 +470,27 @@ class SparkContext( * Return a map from the slave to the max memory available for caching and the remaining * memory available for caching. */ - def getSlavesMemoryStatus: Map[String, (Long, Long)] = { + def getExecutorMemoryStatus: Map[String, (Long, Long)] = { env.blockManager.master.getMemoryStatus.map { case(blockManagerId, mem) => (blockManagerId.ip + ":" + blockManagerId.port, mem) } } + /** + * Return information about what RDDs are cached, if they are in mem or on disk, how much space + * they take, etc. + */ + def getRDDStorageInfo : Array[RDDInfo] = { + StorageUtils.rddInfoFromStorageStatus(getExecutorStorageStatus, this) + } + + /** + * Return information about blocks stored in all of the slaves + */ + def getExecutorStorageStatus : Array[StorageStatus] = { + env.blockManager.master.getStorageStatus + } + /** * Clear the job's list of files added by `addFile` so that they do not get downloaded to * any new nodes. diff --git a/core/src/main/scala/spark/api/python/PythonRDD.scala b/core/src/main/scala/spark/api/python/PythonRDD.scala index 39758e94f46fefaa0eccabfbb43bcc1e10491d8f..ab8351e55e9efa614533fa2cd93947efe688b2b5 100644 --- a/core/src/main/scala/spark/api/python/PythonRDD.scala +++ b/core/src/main/scala/spark/api/python/PythonRDD.scala @@ -238,6 +238,11 @@ private[spark] object PythonRDD { } def writeIteratorToPickleFile[T](items: java.util.Iterator[T], filename: String) { + import scala.collection.JavaConverters._ + writeIteratorToPickleFile(items.asScala, filename) + } + + def writeIteratorToPickleFile[T](items: Iterator[T], filename: String) { val file = new DataOutputStream(new FileOutputStream(filename)) for (item <- items) { writeAsPickle(item, file) @@ -245,8 +250,10 @@ private[spark] object PythonRDD { file.close() } - def takePartition[T](rdd: RDD[T], partition: Int): java.util.Iterator[T] = - rdd.context.runJob(rdd, ((x: Iterator[T]) => x), Seq(partition), true).head + def takePartition[T](rdd: RDD[T], partition: Int): Iterator[T] = { + implicit val cm : ClassManifest[T] = rdd.elementClassManifest + rdd.context.runJob(rdd, ((x: Iterator[T]) => x.toArray), Seq(partition), true).head.iterator + } } private object Pickle { diff --git a/core/src/main/scala/spark/deploy/LocalSparkCluster.scala b/core/src/main/scala/spark/deploy/LocalSparkCluster.scala index 2836574ecb23bb50de012b15d7d7f8f1c54c22a8..22319a96caef7ff80f97259bccd8381b0f6514bd 100644 --- a/core/src/main/scala/spark/deploy/LocalSparkCluster.scala +++ b/core/src/main/scala/spark/deploy/LocalSparkCluster.scala @@ -18,35 +18,23 @@ import scala.collection.mutable.ArrayBuffer private[spark] class LocalSparkCluster(numWorkers: Int, coresPerWorker: Int, memoryPerWorker: Int) extends Logging { - val localIpAddress = Utils.localIpAddress + private val localIpAddress = Utils.localIpAddress + private val masterActorSystems = ArrayBuffer[ActorSystem]() + private val workerActorSystems = ArrayBuffer[ActorSystem]() - var masterActor : ActorRef = _ - var masterActorSystem : ActorSystem = _ - var masterPort : Int = _ - var masterUrl : String = _ - - val workerActorSystems = ArrayBuffer[ActorSystem]() - val workerActors = ArrayBuffer[ActorRef]() - - def start() : String = { + def start(): String = { logInfo("Starting a local Spark cluster with " + numWorkers + " workers.") /* Start the Master */ - val (actorSystem, masterPort) = AkkaUtils.createActorSystem("sparkMaster", localIpAddress, 0) - masterActorSystem = actorSystem - masterUrl = "spark://" + localIpAddress + ":" + masterPort - masterActor = masterActorSystem.actorOf( - Props(new Master(localIpAddress, masterPort, 0)), name = "Master") + val (masterSystem, masterPort) = Master.startSystemAndActor(localIpAddress, 0, 0) + masterActorSystems += masterSystem + val masterUrl = "spark://" + localIpAddress + ":" + masterPort - /* Start the Slaves */ + /* Start the Workers */ for (workerNum <- 1 to numWorkers) { - val (actorSystem, boundPort) = - AkkaUtils.createActorSystem("sparkWorker" + workerNum, localIpAddress, 0) - workerActorSystems += actorSystem - val actor = actorSystem.actorOf( - Props(new Worker(localIpAddress, boundPort, 0, coresPerWorker, memoryPerWorker, masterUrl)), - name = "Worker") - workerActors += actor + val (workerSystem, _) = Worker.startSystemAndActor(localIpAddress, 0, 0, coresPerWorker, + memoryPerWorker, masterUrl, null, Some(workerNum)) + workerActorSystems += workerSystem } return masterUrl @@ -57,7 +45,7 @@ class LocalSparkCluster(numWorkers: Int, coresPerWorker: Int, memoryPerWorker: I // Stop the workers before the master so they don't get upset that it disconnected workerActorSystems.foreach(_.shutdown()) workerActorSystems.foreach(_.awaitTermination()) - masterActorSystem.shutdown() - masterActorSystem.awaitTermination() + masterActorSystems.foreach(_.shutdown()) + masterActorSystems.foreach(_.awaitTermination()) } } diff --git a/core/src/main/scala/spark/deploy/client/Client.scala b/core/src/main/scala/spark/deploy/client/Client.scala index 90fe9508cdba9b5df0b438ee4e91447915c2c6fd..a63eee12339d12f8ac3b3b236b54d6cec603e59a 100644 --- a/core/src/main/scala/spark/deploy/client/Client.scala +++ b/core/src/main/scala/spark/deploy/client/Client.scala @@ -9,6 +9,7 @@ import spark.{SparkException, Logging} import akka.remote.RemoteClientLifeCycleEvent import akka.remote.RemoteClientShutdown import spark.deploy.RegisterJob +import spark.deploy.master.Master import akka.remote.RemoteClientDisconnected import akka.actor.Terminated import akka.dispatch.Await @@ -24,26 +25,18 @@ private[spark] class Client( listener: ClientListener) extends Logging { - val MASTER_REGEX = "spark://([^:]+):([0-9]+)".r - var actor: ActorRef = null var jobId: String = null - if (MASTER_REGEX.unapplySeq(masterUrl) == None) { - throw new SparkException("Invalid master URL: " + masterUrl) - } - class ClientActor extends Actor with Logging { var master: ActorRef = null var masterAddress: Address = null var alreadyDisconnected = false // To avoid calling listener.disconnected() multiple times override def preStart() { - val Seq(masterHost, masterPort) = MASTER_REGEX.unapplySeq(masterUrl).get - logInfo("Connecting to master spark://" + masterHost + ":" + masterPort) - val akkaUrl = "akka://spark@%s:%s/user/Master".format(masterHost, masterPort) + logInfo("Connecting to master " + masterUrl) try { - master = context.actorFor(akkaUrl) + master = context.actorFor(Master.toAkkaUrl(masterUrl)) masterAddress = master.path.address master ! RegisterJob(jobDescription) context.system.eventStream.subscribe(self, classOf[RemoteClientLifeCycleEvent]) diff --git a/core/src/main/scala/spark/deploy/master/Master.scala b/core/src/main/scala/spark/deploy/master/Master.scala index c618e87cdd2b1f57edcbb4613f74a402437611af..92e7914b1b931a01e4237d497821306ea2989463 100644 --- a/core/src/main/scala/spark/deploy/master/Master.scala +++ b/core/src/main/scala/spark/deploy/master/Master.scala @@ -262,11 +262,29 @@ private[spark] class Master(ip: String, port: Int, webUiPort: Int) extends Actor } private[spark] object Master { + private val systemName = "sparkMaster" + private val actorName = "Master" + private val sparkUrlRegex = "spark://([^:]+):([0-9]+)".r + def main(argStrings: Array[String]) { val args = new MasterArguments(argStrings) - val (actorSystem, boundPort) = AkkaUtils.createActorSystem("spark", args.ip, args.port) - val actor = actorSystem.actorOf( - Props(new Master(args.ip, boundPort, args.webUiPort)), name = "Master") + val (actorSystem, _) = startSystemAndActor(args.ip, args.port, args.webUiPort) actorSystem.awaitTermination() } + + /** Returns an `akka://...` URL for the Master actor given a sparkUrl `spark://host:ip`. */ + def toAkkaUrl(sparkUrl: String): String = { + sparkUrl match { + case sparkUrlRegex(host, port) => + "akka://%s@%s:%s/user/%s".format(systemName, host, port, actorName) + case _ => + throw new SparkException("Invalid master URL: " + sparkUrl) + } + } + + def startSystemAndActor(host: String, port: Int, webUiPort: Int): (ActorSystem, Int) = { + val (actorSystem, boundPort) = AkkaUtils.createActorSystem(systemName, host, port) + val actor = actorSystem.actorOf(Props(new Master(host, boundPort, webUiPort)), name = actorName) + (actorSystem, boundPort) + } } diff --git a/core/src/main/scala/spark/deploy/worker/ExecutorRunner.scala b/core/src/main/scala/spark/deploy/worker/ExecutorRunner.scala index f5ff267d44fd8e3fef0cb37aebdbf39abb22d39b..4ef637090c4ebbe5f63d9ce599133009c7c06de8 100644 --- a/core/src/main/scala/spark/deploy/worker/ExecutorRunner.scala +++ b/core/src/main/scala/spark/deploy/worker/ExecutorRunner.scala @@ -113,8 +113,7 @@ private[spark] class ExecutorRunner( for ((key, value) <- jobDesc.command.environment) { env.put(key, value) } - env.put("SPARK_CORES", cores.toString) - env.put("SPARK_MEMORY", memory.toString) + env.put("SPARK_MEM", memory.toString + "m") // In case we are running this from within the Spark Shell, avoid creating a "scala" // parent process for the executor command env.put("SPARK_LAUNCH_WITH_SCALA", "0") diff --git a/core/src/main/scala/spark/deploy/worker/Worker.scala b/core/src/main/scala/spark/deploy/worker/Worker.scala index 48177a638a07e9672b0ebacfe5a358d6fcfd8e94..38547ec4f1dffa6ee883fa1cc947751e22f0b6b4 100644 --- a/core/src/main/scala/spark/deploy/worker/Worker.scala +++ b/core/src/main/scala/spark/deploy/worker/Worker.scala @@ -1,7 +1,7 @@ package spark.deploy.worker import scala.collection.mutable.{ArrayBuffer, HashMap} -import akka.actor.{ActorRef, Props, Actor, Terminated} +import akka.actor.{ActorRef, Props, Actor, ActorSystem, Terminated} import spark.{Logging, Utils} import spark.util.AkkaUtils import spark.deploy._ @@ -11,6 +11,7 @@ import java.util.Date import spark.deploy.RegisterWorker import spark.deploy.LaunchExecutor import spark.deploy.RegisterWorkerFailed +import spark.deploy.master.Master import java.io.File private[spark] class Worker( @@ -24,7 +25,6 @@ private[spark] class Worker( extends Actor with Logging { val DATE_FORMAT = new SimpleDateFormat("yyyyMMddHHmmss") // For worker and executor IDs - val MASTER_REGEX = "spark://([^:]+):([0-9]+)".r var master: ActorRef = null var masterWebUiUrl : String = "" @@ -45,11 +45,7 @@ private[spark] class Worker( def memoryFree: Int = memory - memoryUsed def createWorkDir() { - workDir = if (workDirPath != null) { - new File(workDirPath) - } else { - new File(sparkHome, "work") - } + workDir = Option(workDirPath).map(new File(_)).getOrElse(new File(sparkHome, "work")) try { if (!workDir.exists() && !workDir.mkdirs()) { logError("Failed to create work directory " + workDir) @@ -65,8 +61,7 @@ private[spark] class Worker( override def preStart() { logInfo("Starting Spark worker %s:%d with %d cores, %s RAM".format( ip, port, cores, Utils.memoryMegabytesToString(memory))) - val envVar = System.getenv("SPARK_HOME") - sparkHome = new File(if (envVar == null) "." else envVar) + sparkHome = new File(Option(System.getenv("SPARK_HOME")).getOrElse(".")) logInfo("Spark home: " + sparkHome) createWorkDir() connectToMaster() @@ -74,24 +69,15 @@ private[spark] class Worker( } def connectToMaster() { - masterUrl match { - case MASTER_REGEX(masterHost, masterPort) => { - logInfo("Connecting to master spark://" + masterHost + ":" + masterPort) - val akkaUrl = "akka://spark@%s:%s/user/Master".format(masterHost, masterPort) - try { - master = context.actorFor(akkaUrl) - master ! RegisterWorker(workerId, ip, port, cores, memory, webUiPort, publicAddress) - context.system.eventStream.subscribe(self, classOf[RemoteClientLifeCycleEvent]) - context.watch(master) // Doesn't work with remote actors, but useful for testing - } catch { - case e: Exception => - logError("Failed to connect to master", e) - System.exit(1) - } - } - - case _ => - logError("Invalid master URL: " + masterUrl) + logInfo("Connecting to master " + masterUrl) + try { + master = context.actorFor(Master.toAkkaUrl(masterUrl)) + master ! RegisterWorker(workerId, ip, port, cores, memory, webUiPort, publicAddress) + context.system.eventStream.subscribe(self, classOf[RemoteClientLifeCycleEvent]) + context.watch(master) // Doesn't work with remote actors, but useful for testing + } catch { + case e: Exception => + logError("Failed to connect to master", e) System.exit(1) } } @@ -180,11 +166,19 @@ private[spark] class Worker( private[spark] object Worker { def main(argStrings: Array[String]) { val args = new WorkerArguments(argStrings) - val (actorSystem, boundPort) = AkkaUtils.createActorSystem("spark", args.ip, args.port) - val actor = actorSystem.actorOf( - Props(new Worker(args.ip, boundPort, args.webUiPort, args.cores, args.memory, - args.master, args.workDir)), - name = "Worker") + val (actorSystem, _) = startSystemAndActor(args.ip, args.port, args.webUiPort, args.cores, + args.memory, args.master, args.workDir) actorSystem.awaitTermination() } + + def startSystemAndActor(host: String, port: Int, webUiPort: Int, cores: Int, memory: Int, + masterUrl: String, workDir: String, workerNumber: Option[Int] = None): (ActorSystem, Int) = { + // The LocalSparkCluster runs multiple local sparkWorkerX actor systems + val systemName = "sparkWorker" + workerNumber.map(_.toString).getOrElse("") + val (actorSystem, boundPort) = AkkaUtils.createActorSystem(systemName, host, port) + val actor = actorSystem.actorOf(Props(new Worker(host, boundPort, webUiPort, cores, memory, + masterUrl, workDir)), name = "Worker") + (actorSystem, boundPort) + } + } diff --git a/core/src/main/scala/spark/scheduler/DAGScheduler.scala b/core/src/main/scala/spark/scheduler/DAGScheduler.scala index 908a22b2dfa0e39cc1aedc622142601146a93481..319eef69780edce1dad13449fdc22bdc612d715d 100644 --- a/core/src/main/scala/spark/scheduler/DAGScheduler.scala +++ b/core/src/main/scala/spark/scheduler/DAGScheduler.scala @@ -23,7 +23,16 @@ import util.{MetadataCleaner, TimeStampedHashMap} * and to report fetch failures (the submitTasks method, and code to add CompletionEvents). */ private[spark] -class DAGScheduler(taskSched: TaskScheduler) extends TaskSchedulerListener with Logging { +class DAGScheduler( + taskSched: TaskScheduler, + mapOutputTracker: MapOutputTracker, + blockManagerMaster: BlockManagerMaster, + env: SparkEnv) + extends TaskSchedulerListener with Logging { + + def this(taskSched: TaskScheduler) { + this(taskSched, SparkEnv.get.mapOutputTracker, SparkEnv.get.blockManager.master, SparkEnv.get) + } taskSched.setListener(this) // Called by TaskScheduler to report task completions or failures. @@ -66,10 +75,6 @@ class DAGScheduler(taskSched: TaskScheduler) extends TaskSchedulerListener with var cacheLocs = new HashMap[Int, Array[List[String]]] - val env = SparkEnv.get - val mapOutputTracker = env.mapOutputTracker - val blockManagerMaster = env.blockManager.master - // For tracking failed nodes, we use the MapOutputTracker's generation number, which is // sent with every task. When we detect a node failing, we note the current generation number // and failed executor, increment it for new tasks, and use this to ignore stray ShuffleMapTask @@ -90,12 +95,14 @@ class DAGScheduler(taskSched: TaskScheduler) extends TaskSchedulerListener with val metadataCleaner = new MetadataCleaner("DAGScheduler", this.cleanup) // Start a thread to run the DAGScheduler event loop - new Thread("DAGScheduler") { - setDaemon(true) - override def run() { - DAGScheduler.this.run() - } - }.start() + def start() { + new Thread("DAGScheduler") { + setDaemon(true) + override def run() { + DAGScheduler.this.run() + } + }.start() + } private def getCacheLocs(rdd: RDD[_]): Array[List[String]] = { if (!cacheLocs.contains(rdd.id)) { @@ -176,19 +183,16 @@ class DAGScheduler(taskSched: TaskScheduler) extends TaskSchedulerListener with def visit(rdd: RDD[_]) { if (!visited(rdd)) { visited += rdd - val locs = getCacheLocs(rdd) - for (p <- 0 until rdd.splits.size) { - if (locs(p) == Nil) { - for (dep <- rdd.dependencies) { - dep match { - case shufDep: ShuffleDependency[_,_] => - val mapStage = getShuffleMapStage(shufDep, stage.priority) - if (!mapStage.isAvailable) { - missing += mapStage - } - case narrowDep: NarrowDependency[_] => - visit(narrowDep.rdd) - } + if (getCacheLocs(rdd).contains(Nil)) { + for (dep <- rdd.dependencies) { + dep match { + case shufDep: ShuffleDependency[_,_] => + val mapStage = getShuffleMapStage(shufDep, stage.priority) + if (!mapStage.isAvailable) { + missing += mapStage + } + case narrowDep: NarrowDependency[_] => + visit(narrowDep.rdd) } } } @@ -198,6 +202,29 @@ class DAGScheduler(taskSched: TaskScheduler) extends TaskSchedulerListener with missing.toList } + /** + * Returns (and does not submit) a JobSubmitted event suitable to run a given job, and a + * JobWaiter whose getResult() method will return the result of the job when it is complete. + * + * The job is assumed to have at least one partition; zero partition jobs should be handled + * without a JobSubmitted event. + */ + private[scheduler] def prepareJob[T, U: ClassManifest]( + finalRdd: RDD[T], + func: (TaskContext, Iterator[T]) => U, + partitions: Seq[Int], + callSite: String, + allowLocal: Boolean, + resultHandler: (Int, U) => Unit) + : (JobSubmitted, JobWaiter[U]) = + { + assert(partitions.size > 0) + val waiter = new JobWaiter(partitions.size, resultHandler) + val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _] + val toSubmit = JobSubmitted(finalRdd, func2, partitions.toArray, allowLocal, callSite, waiter) + return (toSubmit, waiter) + } + def runJob[T, U: ClassManifest]( finalRdd: RDD[T], func: (TaskContext, Iterator[T]) => U, @@ -209,9 +236,9 @@ class DAGScheduler(taskSched: TaskScheduler) extends TaskSchedulerListener with if (partitions.size == 0) { return } - val waiter = new JobWaiter(partitions.size, resultHandler) - val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _] - eventQueue.put(JobSubmitted(finalRdd, func2, partitions.toArray, allowLocal, callSite, waiter)) + val (toSubmit, waiter) = prepareJob( + finalRdd, func, partitions, callSite, allowLocal, resultHandler) + eventQueue.put(toSubmit) waiter.awaitResult() match { case JobSucceeded => {} case JobFailed(exception: Exception) => @@ -235,6 +262,84 @@ class DAGScheduler(taskSched: TaskScheduler) extends TaskSchedulerListener with return listener.awaitResult() // Will throw an exception if the job fails } + /** + * Process one event retrieved from the event queue. + * Returns true if we should stop the event loop. + */ + private[scheduler] def processEvent(event: DAGSchedulerEvent): Boolean = { + event match { + case JobSubmitted(finalRDD, func, partitions, allowLocal, callSite, listener) => + val runId = nextRunId.getAndIncrement() + val finalStage = newStage(finalRDD, None, runId) + val job = new ActiveJob(runId, finalStage, func, partitions, callSite, listener) + clearCacheLocs() + logInfo("Got job " + job.runId + " (" + callSite + ") with " + partitions.length + + " output partitions (allowLocal=" + allowLocal + ")") + logInfo("Final stage: " + finalStage + " (" + finalStage.origin + ")") + logInfo("Parents of final stage: " + finalStage.parents) + logInfo("Missing parents: " + getMissingParentStages(finalStage)) + if (allowLocal && finalStage.parents.size == 0 && partitions.length == 1) { + // Compute very short actions like first() or take() with no parent stages locally. + runLocally(job) + } else { + activeJobs += job + resultStageToJob(finalStage) = job + submitStage(finalStage) + } + + case ExecutorLost(execId) => + handleExecutorLost(execId) + + case completion: CompletionEvent => + handleTaskCompletion(completion) + + case TaskSetFailed(taskSet, reason) => + abortStage(idToStage(taskSet.stageId), reason) + + case StopDAGScheduler => + // Cancel any active jobs + for (job <- activeJobs) { + val error = new SparkException("Job cancelled because SparkContext was shut down") + job.listener.jobFailed(error) + } + return true + } + return false + } + + /** + * Resubmit any failed stages. Ordinarily called after a small amount of time has passed since + * the last fetch failure. + */ + private[scheduler] def resubmitFailedStages() { + logInfo("Resubmitting failed stages") + clearCacheLocs() + val failed2 = failed.toArray + failed.clear() + for (stage <- failed2.sortBy(_.priority)) { + submitStage(stage) + } + } + + /** + * Check for waiting or failed stages which are now eligible for resubmission. + * Ordinarily run on every iteration of the event loop. + */ + private[scheduler] def submitWaitingStages() { + // TODO: We might want to run this less often, when we are sure that something has become + // runnable that wasn't before. + logTrace("Checking for newly runnable parent stages") + logTrace("running: " + running) + logTrace("waiting: " + waiting) + logTrace("failed: " + failed) + val waiting2 = waiting.toArray + waiting.clear() + for (stage <- waiting2.sortBy(_.priority)) { + submitStage(stage) + } + } + + /** * The main event loop of the DAG scheduler, which waits for new-job / task-finished / failure * events and responds by launching tasks. This runs in a dedicated thread and receives events @@ -245,77 +350,26 @@ class DAGScheduler(taskSched: TaskScheduler) extends TaskSchedulerListener with while (true) { val event = eventQueue.poll(POLL_TIMEOUT, TimeUnit.MILLISECONDS) - val time = System.currentTimeMillis() // TODO: use a pluggable clock for testability if (event != null) { logDebug("Got event of type " + event.getClass.getName) } - event match { - case JobSubmitted(finalRDD, func, partitions, allowLocal, callSite, listener) => - val runId = nextRunId.getAndIncrement() - val finalStage = newStage(finalRDD, None, runId) - val job = new ActiveJob(runId, finalStage, func, partitions, callSite, listener) - clearCacheLocs() - logInfo("Got job " + job.runId + " (" + callSite + ") with " + partitions.length + - " output partitions") - logInfo("Final stage: " + finalStage + " (" + finalStage.origin + ")") - logInfo("Parents of final stage: " + finalStage.parents) - logInfo("Missing parents: " + getMissingParentStages(finalStage)) - if (allowLocal && finalStage.parents.size == 0 && partitions.length == 1) { - // Compute very short actions like first() or take() with no parent stages locally. - runLocally(job) - } else { - activeJobs += job - resultStageToJob(finalStage) = job - submitStage(finalStage) - } - - case ExecutorLost(execId) => - handleExecutorLost(execId) - - case completion: CompletionEvent => - handleTaskCompletion(completion) - - case TaskSetFailed(taskSet, reason) => - abortStage(idToStage(taskSet.stageId), reason) - - case StopDAGScheduler => - // Cancel any active jobs - for (job <- activeJobs) { - val error = new SparkException("Job cancelled because SparkContext was shut down") - job.listener.jobFailed(error) - } + if (event != null) { + if (processEvent(event)) { return - - case null => - // queue.poll() timed out, ignore it + } } + val time = System.currentTimeMillis() // TODO: use a pluggable clock for testability // Periodically resubmit failed stages if some map output fetches have failed and we have // waited at least RESUBMIT_TIMEOUT. We wait for this short time because when a node fails, // tasks on many other nodes are bound to get a fetch failure, and they won't all get it at // the same time, so we want to make sure we've identified all the reduce tasks that depend // on the failed node. if (failed.size > 0 && time > lastFetchFailureTime + RESUBMIT_TIMEOUT) { - logInfo("Resubmitting failed stages") - clearCacheLocs() - val failed2 = failed.toArray - failed.clear() - for (stage <- failed2.sortBy(_.priority)) { - submitStage(stage) - } + resubmitFailedStages() } else { - // TODO: We might want to run this less often, when we are sure that something has become - // runnable that wasn't before. - logTrace("Checking for newly runnable parent stages") - logTrace("running: " + running) - logTrace("waiting: " + waiting) - logTrace("failed: " + failed) - val waiting2 = waiting.toArray - waiting.clear() - for (stage <- waiting2.sortBy(_.priority)) { - submitStage(stage) - } + submitWaitingStages() } } } @@ -547,7 +601,7 @@ class DAGScheduler(taskSched: TaskScheduler) extends TaskSchedulerListener with if (!failedGeneration.contains(execId) || failedGeneration(execId) < currentGeneration) { failedGeneration(execId) = currentGeneration logInfo("Executor lost: %s (generation %d)".format(execId, currentGeneration)) - env.blockManager.master.removeExecutor(execId) + blockManagerMaster.removeExecutor(execId) // TODO: This will be really slow if we keep accumulating shuffle map stages for ((shuffleId, stage) <- shuffleToMapStage) { stage.removeOutputsOnExecutor(execId) diff --git a/core/src/main/scala/spark/scheduler/cluster/SchedulerBackend.scala b/core/src/main/scala/spark/scheduler/cluster/SchedulerBackend.scala index ddcd64d7c6d1f4576df611620037db2869746fe3..9ac875de3a16a890a5654c79581e15b7bd607ec4 100644 --- a/core/src/main/scala/spark/scheduler/cluster/SchedulerBackend.scala +++ b/core/src/main/scala/spark/scheduler/cluster/SchedulerBackend.scala @@ -1,5 +1,7 @@ package spark.scheduler.cluster +import spark.Utils + /** * A backend interface for cluster scheduling systems that allows plugging in different ones under * ClusterScheduler. We assume a Mesos-like model where the application gets resource offers as @@ -11,5 +13,15 @@ private[spark] trait SchedulerBackend { def reviveOffers(): Unit def defaultParallelism(): Int + // Memory used by each executor (in megabytes) + protected val executorMemory = { + // TODO: Might need to add some extra memory for the non-heap parts of the JVM + Option(System.getProperty("spark.executor.memory")) + .orElse(Option(System.getenv("SPARK_MEM"))) + .map(Utils.memoryStringToMb) + .getOrElse(512) + } + + // TODO: Probably want to add a killTask too } diff --git a/core/src/main/scala/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala b/core/src/main/scala/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala index 9760d23072d68e2b84445e0a1f569b4b0f05ef0c..59ff8bcb90fc2620de2b538860cff59e9a2446c8 100644 --- a/core/src/main/scala/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala +++ b/core/src/main/scala/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala @@ -20,16 +20,6 @@ private[spark] class SparkDeploySchedulerBackend( val maxCores = System.getProperty("spark.cores.max", Int.MaxValue.toString).toInt - // Memory used by each executor (in megabytes) - val executorMemory = { - if (System.getenv("SPARK_MEM") != null) { - Utils.memoryStringToMb(System.getenv("SPARK_MEM")) - // TODO: Might need to add some extra memory for the non-heap parts of the JVM - } else { - 512 - } - } - override def start() { super.start() diff --git a/core/src/main/scala/spark/scheduler/mesos/CoarseMesosSchedulerBackend.scala b/core/src/main/scala/spark/scheduler/mesos/CoarseMesosSchedulerBackend.scala index 7bf56a05d64c0f84d3b5e5b56353bad167d95a3e..b481ec0a72dce5937f773ca03fa1f9ae6c9eda9d 100644 --- a/core/src/main/scala/spark/scheduler/mesos/CoarseMesosSchedulerBackend.scala +++ b/core/src/main/scala/spark/scheduler/mesos/CoarseMesosSchedulerBackend.scala @@ -35,16 +35,6 @@ private[spark] class CoarseMesosSchedulerBackend( val MAX_SLAVE_FAILURES = 2 // Blacklist a slave after this many failures - // Memory used by each executor (in megabytes) - val executorMemory = { - if (System.getenv("SPARK_MEM") != null) { - Utils.memoryStringToMb(System.getenv("SPARK_MEM")) - // TODO: Might need to add some extra memory for the non-heap parts of the JVM - } else { - 512 - } - } - // Lock used to wait for scheduler to be registered var isRegistered = false val registeredLock = new Object() diff --git a/core/src/main/scala/spark/scheduler/mesos/MesosSchedulerBackend.scala b/core/src/main/scala/spark/scheduler/mesos/MesosSchedulerBackend.scala index eab1c60e0b2f98c37f40af584218ab81c4c35f2d..300766d0f5c729d84c0b152f889e5996111aeb4d 100644 --- a/core/src/main/scala/spark/scheduler/mesos/MesosSchedulerBackend.scala +++ b/core/src/main/scala/spark/scheduler/mesos/MesosSchedulerBackend.scala @@ -29,16 +29,6 @@ private[spark] class MesosSchedulerBackend( with MScheduler with Logging { - // Memory used by each executor (in megabytes) - val EXECUTOR_MEMORY = { - if (System.getenv("SPARK_MEM") != null) { - Utils.memoryStringToMb(System.getenv("SPARK_MEM")) - // TODO: Might need to add some extra memory for the non-heap parts of the JVM - } else { - 512 - } - } - // Lock used to wait for scheduler to be registered var isRegistered = false val registeredLock = new Object() @@ -89,7 +79,7 @@ private[spark] class MesosSchedulerBackend( val memory = Resource.newBuilder() .setName("mem") .setType(Value.Type.SCALAR) - .setScalar(Value.Scalar.newBuilder().setValue(EXECUTOR_MEMORY).build()) + .setScalar(Value.Scalar.newBuilder().setValue(executorMemory).build()) .build() val command = CommandInfo.newBuilder() .setValue(execScript) @@ -161,7 +151,7 @@ private[spark] class MesosSchedulerBackend( def enoughMemory(o: Offer) = { val mem = getResource(o.getResourcesList, "mem") val slaveId = o.getSlaveId.getValue - mem >= EXECUTOR_MEMORY || slaveIdsWithExecutors.contains(slaveId) + mem >= executorMemory || slaveIdsWithExecutors.contains(slaveId) } for ((offer, index) <- offers.zipWithIndex if enoughMemory(offer)) { diff --git a/core/src/main/scala/spark/storage/BlockManagerMaster.scala b/core/src/main/scala/spark/storage/BlockManagerMaster.scala index 36398095a2e8ac97f9455f04d206a9b4fe9e31dd..7389bee1509d45cceb61e9afce0760e08de01343 100644 --- a/core/src/main/scala/spark/storage/BlockManagerMaster.scala +++ b/core/src/main/scala/spark/storage/BlockManagerMaster.scala @@ -27,8 +27,6 @@ private[spark] class BlockManagerMaster( val AKKA_RETRY_INTERVAL_MS: Int = System.getProperty("spark.akka.retry.wait", "3000").toInt val DRIVER_AKKA_ACTOR_NAME = "BlockMasterManager" - val SLAVE_AKKA_ACTOR_NAME = "BlockSlaveManager" - val DEFAULT_MANAGER_IP: String = Utils.localHostName() val timeout = 10.seconds var driverActor: ActorRef = { @@ -117,6 +115,10 @@ private[spark] class BlockManagerMaster( askDriverWithReply[Map[BlockManagerId, (Long, Long)]](GetMemoryStatus) } + def getStorageStatus: Array[StorageStatus] = { + askDriverWithReply[ArrayBuffer[StorageStatus]](GetStorageStatus).toArray + } + /** Stop the driver actor, called only on the Spark driver node */ def stop() { if (driverActor != null) { diff --git a/core/src/main/scala/spark/storage/BlockManagerUI.scala b/core/src/main/scala/spark/storage/BlockManagerUI.scala index eda320fa47972074228b01964962c63e73bbd8fa..9e6721ec17169a8ca33753393329049467b105dd 100644 --- a/core/src/main/scala/spark/storage/BlockManagerUI.scala +++ b/core/src/main/scala/spark/storage/BlockManagerUI.scala @@ -1,13 +1,10 @@ package spark.storage import akka.actor.{ActorRef, ActorSystem} -import akka.pattern.ask import akka.util.Timeout import akka.util.duration._ -import cc.spray.directives._ import cc.spray.typeconversion.TwirlSupport._ import cc.spray.Directives -import scala.collection.mutable.ArrayBuffer import spark.{Logging, SparkContext} import spark.util.AkkaUtils import spark.Utils @@ -48,32 +45,26 @@ class BlockManagerUI(val actorSystem: ActorSystem, blockManagerMaster: ActorRef, path("") { completeWith { // Request the current storage status from the Master - val future = blockManagerMaster ? GetStorageStatus - future.map { status => - // Calculate macro-level statistics - val storageStatusList = status.asInstanceOf[ArrayBuffer[StorageStatus]].toArray - val maxMem = storageStatusList.map(_.maxMem).reduce(_+_) - val remainingMem = storageStatusList.map(_.memRemaining).reduce(_+_) - val diskSpaceUsed = storageStatusList.flatMap(_.blocks.values.map(_.diskSize)) - .reduceOption(_+_).getOrElse(0L) - val rdds = StorageUtils.rddInfoFromStorageStatus(storageStatusList, sc) - spark.storage.html.index. - render(maxMem, remainingMem, diskSpaceUsed, rdds, storageStatusList) - } + val storageStatusList = sc.getExecutorStorageStatus + // Calculate macro-level statistics + val maxMem = storageStatusList.map(_.maxMem).reduce(_+_) + val remainingMem = storageStatusList.map(_.memRemaining).reduce(_+_) + val diskSpaceUsed = storageStatusList.flatMap(_.blocks.values.map(_.diskSize)) + .reduceOption(_+_).getOrElse(0L) + val rdds = StorageUtils.rddInfoFromStorageStatus(storageStatusList, sc) + spark.storage.html.index. + render(maxMem, remainingMem, diskSpaceUsed, rdds, storageStatusList) } } ~ path("rdd") { parameter("id") { id => completeWith { - val future = blockManagerMaster ? GetStorageStatus - future.map { status => - val prefix = "rdd_" + id.toString - val storageStatusList = status.asInstanceOf[ArrayBuffer[StorageStatus]].toArray - val filteredStorageStatusList = StorageUtils. - filterStorageStatusByPrefix(storageStatusList, prefix) - val rddInfo = StorageUtils.rddInfoFromStorageStatus(filteredStorageStatusList, sc).head - spark.storage.html.rdd.render(rddInfo, filteredStorageStatusList) - } + val prefix = "rdd_" + id.toString + val storageStatusList = sc.getExecutorStorageStatus + val filteredStorageStatusList = StorageUtils. + filterStorageStatusByPrefix(storageStatusList, prefix) + val rddInfo = StorageUtils.rddInfoFromStorageStatus(filteredStorageStatusList, sc).head + spark.storage.html.rdd.render(rddInfo, filteredStorageStatusList) } } } ~ diff --git a/core/src/main/scala/spark/storage/StorageUtils.scala b/core/src/main/scala/spark/storage/StorageUtils.scala index a10e3a95c60d3a0f4288adf0da42827276f12c18..5f72b67b2cc27caf4eba9ad08d3fd079374dfcef 100644 --- a/core/src/main/scala/spark/storage/StorageUtils.scala +++ b/core/src/main/scala/spark/storage/StorageUtils.scala @@ -1,6 +1,6 @@ package spark.storage -import spark.SparkContext +import spark.{Utils, SparkContext} import BlockManagerMasterActor.BlockStatus private[spark] @@ -22,8 +22,13 @@ case class StorageStatus(blockManagerId: BlockManagerId, maxMem: Long, } case class RDDInfo(id: Int, name: String, storageLevel: StorageLevel, - numPartitions: Int, memSize: Long, diskSize: Long) - + numCachedPartitions: Int, numPartitions: Int, memSize: Long, diskSize: Long) { + override def toString = { + import Utils.memoryBytesToString + "RDD \"%s\" (%d) Storage: %s; CachedPartitions: %d; TotalPartitions: %d; MemorySize: %s; DiskSize: %s".format(name, id, + storageLevel.toString, numCachedPartitions, numPartitions, memoryBytesToString(memSize), memoryBytesToString(diskSize)) + } +} /* Helper methods for storage-related objects */ private[spark] @@ -38,8 +43,6 @@ object StorageUtils { /* Given a list of BlockStatus objets, returns information for each RDD */ def rddInfoFromBlockStatusList(infos: Map[String, BlockStatus], sc: SparkContext) : Array[RDDInfo] = { - // Find all RDD Blocks (ignore broadcast variables) - val rddBlocks = infos.filterKeys(_.startsWith("rdd")) // Group by rddId, ignore the partition name val groupedRddBlocks = infos.groupBy { case(k, v) => @@ -56,10 +59,11 @@ object StorageUtils { // Find the id of the RDD, e.g. rdd_1 => 1 val rddId = rddKey.split("_").last.toInt // Get the friendly name for the rdd, if available. - val rddName = Option(sc.persistentRdds(rddId).name).getOrElse(rddKey) - val rddStorageLevel = sc.persistentRdds(rddId).getStorageLevel - - RDDInfo(rddId, rddName, rddStorageLevel, rddBlocks.length, memSize, diskSize) + val rdd = sc.persistentRdds(rddId) + val rddName = Option(rdd.name).getOrElse(rddKey) + val rddStorageLevel = rdd.getStorageLevel + + RDDInfo(rddId, rddName, rddStorageLevel, rddBlocks.length, rdd.splits.size, memSize, diskSize) }.toArray } @@ -75,4 +79,4 @@ object StorageUtils { } -} \ No newline at end of file +} diff --git a/core/src/main/scala/spark/util/AkkaUtils.scala b/core/src/main/scala/spark/util/AkkaUtils.scala index e43fbd6b1cfa5e2ef086c307fff5648d26b19396..30aec5a663040505398a221b892104d77cd0baea 100644 --- a/core/src/main/scala/spark/util/AkkaUtils.scala +++ b/core/src/main/scala/spark/util/AkkaUtils.scala @@ -18,9 +18,13 @@ import java.util.concurrent.TimeoutException * Various utility classes for working with Akka. */ private[spark] object AkkaUtils { + /** * Creates an ActorSystem ready for remoting, with various Spark features. Returns both the * ActorSystem itself and its port (which is hard to get from Akka). + * + * Note: the `name` parameter is important, as even if a client sends a message to right + * host + port, if the system name is incorrect, Akka will drop the message. */ def createActorSystem(name: String, host: String, port: Int): (ActorSystem, Int) = { val akkaThreads = System.getProperty("spark.akka.threads", "4").toInt @@ -42,7 +46,7 @@ private[spark] object AkkaUtils { akka.actor.default-dispatcher.throughput = %d """.format(host, port, akkaTimeout, akkaFrameSize, akkaThreads, akkaBatchSize)) - val actorSystem = ActorSystem("spark", akkaConf, getClass.getClassLoader) + val actorSystem = ActorSystem(name, akkaConf, getClass.getClassLoader) // Figure out the port number we bound to, in case port was passed as 0. This is a bit of a // hack because Akka doesn't let you figure out the port through the public API yet. diff --git a/core/src/main/twirl/spark/storage/rdd.scala.html b/core/src/main/twirl/spark/storage/rdd.scala.html index ac7f8c981fa830f62c64acb30d64067eec1ab793..d85addeb1755e77fa0c7ee947b8e6892aa3e29d4 100644 --- a/core/src/main/twirl/spark/storage/rdd.scala.html +++ b/core/src/main/twirl/spark/storage/rdd.scala.html @@ -11,7 +11,11 @@ <strong>Storage Level:</strong> @(rddInfo.storageLevel.description) <li> - <strong>Partitions:</strong> + <strong>Cached Partitions:</strong> + @(rddInfo.numCachedPartitions) + </li> + <li> + <strong>Total Partitions:</strong> @(rddInfo.numPartitions) </li> <li> diff --git a/core/src/main/twirl/spark/storage/rdd_table.scala.html b/core/src/main/twirl/spark/storage/rdd_table.scala.html index af801cf229569fb3110f599f64810063dc695156..a51e64aed007292782fa3df720a7ebf2130c76f8 100644 --- a/core/src/main/twirl/spark/storage/rdd_table.scala.html +++ b/core/src/main/twirl/spark/storage/rdd_table.scala.html @@ -6,7 +6,8 @@ <tr> <th>RDD Name</th> <th>Storage Level</th> - <th>Partitions</th> + <th>Cached Partitions</th> + <th>Fraction Partitions Cached</th> <th>Size in Memory</th> <th>Size on Disk</th> </tr> @@ -21,7 +22,8 @@ </td> <td>@(rdd.storageLevel.description) </td> - <td>@rdd.numPartitions</td> + <td>@rdd.numCachedPartitions</td> + <td>@(rdd.numCachedPartitions / rdd.numPartitions.toDouble)</td> <td>@{Utils.memoryBytesToString(rdd.memSize)}</td> <td>@{Utils.memoryBytesToString(rdd.diskSize)}</td> </tr> diff --git a/core/src/test/scala/spark/DriverSuite.scala b/core/src/test/scala/spark/DriverSuite.scala index 342610e1dd93b3a9e856ce2f5e40d47169e8dced..5e84b3a66a1a9a885f7bcea95b4d60eedab4c9e1 100644 --- a/core/src/test/scala/spark/DriverSuite.scala +++ b/core/src/test/scala/spark/DriverSuite.scala @@ -9,10 +9,11 @@ import org.scalatest.time.SpanSugar._ class DriverSuite extends FunSuite with Timeouts { test("driver should exit after finishing") { + assert(System.getenv("SPARK_HOME") != null) // Regression test for SPARK-530: "Spark driver process doesn't exit after finishing" val masters = Table(("master"), ("local"), ("local-cluster[2,1,512]")) forAll(masters) { (master: String) => - failAfter(10 seconds) { + failAfter(30 seconds) { Utils.execute(Seq("./run", "spark.DriverWithoutCleanup", master), new File(System.getenv("SPARK_HOME"))) } diff --git a/core/src/test/scala/spark/MapOutputTrackerSuite.scala b/core/src/test/scala/spark/MapOutputTrackerSuite.scala index f4e7ec39fe301b4aa1b1a4e674ec95d73363cb85..dd19442dcb4ad656cb73e1ccbe1e10c523617142 100644 --- a/core/src/test/scala/spark/MapOutputTrackerSuite.scala +++ b/core/src/test/scala/spark/MapOutputTrackerSuite.scala @@ -79,8 +79,7 @@ class MapOutputTrackerSuite extends FunSuite with LocalSparkContext { test("remote fetch") { try { System.clearProperty("spark.driver.host") // In case some previous test had set it - val (actorSystem, boundPort) = - AkkaUtils.createActorSystem("test", "localhost", 0) + val (actorSystem, boundPort) = AkkaUtils.createActorSystem("spark", "localhost", 0) System.setProperty("spark.driver.port", boundPort.toString) val masterTracker = new MapOutputTracker(actorSystem, true) val slaveTracker = new MapOutputTracker(actorSystem, false) diff --git a/core/src/test/scala/spark/RDDSuite.scala b/core/src/test/scala/spark/RDDSuite.scala index 89a3687386e73bdae133e1db74b1494d184ad204..fe7deb10d63b001ca5a3db3e9398dcb38c233126 100644 --- a/core/src/test/scala/spark/RDDSuite.scala +++ b/core/src/test/scala/spark/RDDSuite.scala @@ -14,7 +14,7 @@ class RDDSuite extends FunSuite with LocalSparkContext { val dups = sc.makeRDD(Array(1, 1, 2, 2, 3, 3, 4, 4), 2) assert(dups.distinct().count() === 4) assert(dups.distinct.count === 4) // Can distinct and count be called without parentheses? - assert(dups.distinct().collect === dups.distinct().collect) + assert(dups.distinct.collect === dups.distinct().collect) assert(dups.distinct(2).collect === dups.distinct().collect) assert(nums.reduce(_ + _) === 10) assert(nums.fold(0)(_ + _) === 10) diff --git a/core/src/test/scala/spark/scheduler/DAGSchedulerSuite.scala b/core/src/test/scala/spark/scheduler/DAGSchedulerSuite.scala new file mode 100644 index 0000000000000000000000000000000000000000..83663ac702a5be3d7ea9c89c6ca9b6054adbfee7 --- /dev/null +++ b/core/src/test/scala/spark/scheduler/DAGSchedulerSuite.scala @@ -0,0 +1,663 @@ +package spark.scheduler + +import scala.collection.mutable.{Map, HashMap} + +import org.scalatest.FunSuite +import org.scalatest.BeforeAndAfter +import org.scalatest.concurrent.TimeLimitedTests +import org.scalatest.mock.EasyMockSugar +import org.scalatest.time.{Span, Seconds} + +import org.easymock.EasyMock._ +import org.easymock.Capture +import org.easymock.EasyMock +import org.easymock.{IAnswer, IArgumentMatcher} + +import akka.actor.ActorSystem + +import spark.storage.BlockManager +import spark.storage.BlockManagerId +import spark.storage.BlockManagerMaster +import spark.{Dependency, ShuffleDependency, OneToOneDependency} +import spark.FetchFailedException +import spark.MapOutputTracker +import spark.RDD +import spark.SparkContext +import spark.SparkException +import spark.Split +import spark.TaskContext +import spark.TaskEndReason + +import spark.{FetchFailed, Success} + +/** + * Tests for DAGScheduler. These tests directly call the event processing functions in DAGScheduler + * rather than spawning an event loop thread as happens in the real code. They use EasyMock + * to mock out two classes that DAGScheduler interacts with: TaskScheduler (to which TaskSets are + * submitted) and BlockManagerMaster (from which cache locations are retrieved and to which dead + * host notifications are sent). In addition, tests may check for side effects on a non-mocked + * MapOutputTracker instance. + * + * Tests primarily consist of running DAGScheduler#processEvent and + * DAGScheduler#submitWaitingStages (via test utility functions like runEvent or respondToTaskSet) + * and capturing the resulting TaskSets from the mock TaskScheduler. + */ +class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with EasyMockSugar with TimeLimitedTests { + + // impose a time limit on this test in case we don't let the job finish, in which case + // JobWaiter#getResult will hang. + override val timeLimit = Span(5, Seconds) + + val sc: SparkContext = new SparkContext("local", "DAGSchedulerSuite") + var scheduler: DAGScheduler = null + val taskScheduler = mock[TaskScheduler] + val blockManagerMaster = mock[BlockManagerMaster] + var mapOutputTracker: MapOutputTracker = null + var schedulerThread: Thread = null + var schedulerException: Throwable = null + + /** + * Set of EasyMock argument matchers that match a TaskSet for a given RDD. + * We cache these so we do not create duplicate matchers for the same RDD. + * This allows us to easily setup a sequence of expectations for task sets for + * that RDD. + */ + val taskSetMatchers = new HashMap[MyRDD, IArgumentMatcher] + + /** + * Set of cache locations to return from our mock BlockManagerMaster. + * Keys are (rdd ID, partition ID). Anything not present will return an empty + * list of cache locations silently. + */ + val cacheLocations = new HashMap[(Int, Int), Seq[BlockManagerId]] + + /** + * JobWaiter for the last JobSubmitted event we pushed. To keep tests (most of which + * will only submit one job) from needing to explicitly track it. + */ + var lastJobWaiter: JobWaiter[Int] = null + + /** + * Array into which we are accumulating the results from the last job asynchronously. + */ + var lastJobResult: Array[Int] = null + + /** + * Tell EasyMockSugar what mock objects we want to be configured by expecting {...} + * and whenExecuting {...} */ + implicit val mocks = MockObjects(taskScheduler, blockManagerMaster) + + /** + * Utility function to reset mocks and set expectations on them. EasyMock wants mock objects + * to be reset after each time their expectations are set, and we tend to check mock object + * calls over a single call to DAGScheduler. + * + * We also set a default expectation here that blockManagerMaster.getLocations can be called + * and will return values from cacheLocations. + */ + def resetExpecting(f: => Unit) { + reset(taskScheduler) + reset(blockManagerMaster) + expecting { + expectGetLocations() + f + } + } + + before { + taskSetMatchers.clear() + cacheLocations.clear() + val actorSystem = ActorSystem("test") + mapOutputTracker = new MapOutputTracker(actorSystem, true) + resetExpecting { + taskScheduler.setListener(anyObject()) + } + whenExecuting { + scheduler = new DAGScheduler(taskScheduler, mapOutputTracker, blockManagerMaster, null) + } + } + + after { + assert(scheduler.processEvent(StopDAGScheduler)) + resetExpecting { + taskScheduler.stop() + } + whenExecuting { + scheduler.stop() + } + sc.stop() + System.clearProperty("spark.master.port") + } + + def makeBlockManagerId(host: String): BlockManagerId = + BlockManagerId("exec-" + host, host, 12345) + + /** + * Type of RDD we use for testing. Note that we should never call the real RDD compute methods. + * This is a pair RDD type so it can always be used in ShuffleDependencies. + */ + type MyRDD = RDD[(Int, Int)] + + /** + * Create an RDD for passing to DAGScheduler. These RDDs will use the dependencies and + * preferredLocations (if any) that are passed to them. They are deliberately not executable + * so we can test that DAGScheduler does not try to execute RDDs locally. + */ + def makeRdd( + numSplits: Int, + dependencies: List[Dependency[_]], + locations: Seq[Seq[String]] = Nil + ): MyRDD = { + val maxSplit = numSplits - 1 + return new MyRDD(sc, dependencies) { + override def compute(split: Split, context: TaskContext): Iterator[(Int, Int)] = + throw new RuntimeException("should not be reached") + override def getSplits() = (0 to maxSplit).map(i => new Split { + override def index = i + }).toArray + override def getPreferredLocations(split: Split): Seq[String] = + if (locations.isDefinedAt(split.index)) + locations(split.index) + else + Nil + override def toString: String = "DAGSchedulerSuiteRDD " + id + } + } + + /** + * EasyMock matcher method. For use as an argument matcher for a TaskSet whose first task + * is from a particular RDD. + */ + def taskSetForRdd(rdd: MyRDD): TaskSet = { + val matcher = taskSetMatchers.getOrElseUpdate(rdd, + new IArgumentMatcher { + override def matches(actual: Any): Boolean = { + val taskSet = actual.asInstanceOf[TaskSet] + taskSet.tasks(0) match { + case rt: ResultTask[_, _] => rt.rdd.id == rdd.id + case smt: ShuffleMapTask => smt.rdd.id == rdd.id + case _ => false + } + } + override def appendTo(buf: StringBuffer) { + buf.append("taskSetForRdd(" + rdd + ")") + } + }) + EasyMock.reportMatcher(matcher) + return null + } + + /** + * Setup an EasyMock expectation to repsond to blockManagerMaster.getLocations() called from + * cacheLocations. + */ + def expectGetLocations(): Unit = { + EasyMock.expect(blockManagerMaster.getLocations(anyObject().asInstanceOf[Array[String]])). + andAnswer(new IAnswer[Seq[Seq[BlockManagerId]]] { + override def answer(): Seq[Seq[BlockManagerId]] = { + val blocks = getCurrentArguments()(0).asInstanceOf[Array[String]] + return blocks.map { name => + val pieces = name.split("_") + if (pieces(0) == "rdd") { + val key = pieces(1).toInt -> pieces(2).toInt + if (cacheLocations.contains(key)) { + cacheLocations(key) + } else { + Seq[BlockManagerId]() + } + } else { + Seq[BlockManagerId]() + } + }.toSeq + } + }).anyTimes() + } + + /** + * Process the supplied event as if it were the top of the DAGScheduler event queue, expecting + * the scheduler not to exit. + * + * After processing the event, submit waiting stages as is done on most iterations of the + * DAGScheduler event loop. + */ + def runEvent(event: DAGSchedulerEvent) { + assert(!scheduler.processEvent(event)) + scheduler.submitWaitingStages() + } + + /** + * Expect a TaskSet for the specified RDD to be submitted to the TaskScheduler. Should be + * called from a resetExpecting { ... } block. + * + * Returns a easymock Capture that will contain the task set after the stage is submitted. + * Most tests should use interceptStage() instead of this directly. + */ + def expectStage(rdd: MyRDD): Capture[TaskSet] = { + val taskSetCapture = new Capture[TaskSet] + taskScheduler.submitTasks(and(capture(taskSetCapture), taskSetForRdd(rdd))) + return taskSetCapture + } + + /** + * Expect the supplied code snippet to submit a stage for the specified RDD. + * Return the resulting TaskSet. First marks all the tasks are belonging to the + * current MapOutputTracker generation. + */ + def interceptStage(rdd: MyRDD)(f: => Unit): TaskSet = { + var capture: Capture[TaskSet] = null + resetExpecting { + capture = expectStage(rdd) + } + whenExecuting { + f + } + val taskSet = capture.getValue + for (task <- taskSet.tasks) { + task.generation = mapOutputTracker.getGeneration + } + return taskSet + } + + /** + * Send the given CompletionEvent messages for the tasks in the TaskSet. + */ + def respondToTaskSet(taskSet: TaskSet, results: Seq[(TaskEndReason, Any)]) { + assert(taskSet.tasks.size >= results.size) + for ((result, i) <- results.zipWithIndex) { + if (i < taskSet.tasks.size) { + runEvent(CompletionEvent(taskSet.tasks(i), result._1, result._2, Map[Long, Any]())) + } + } + } + + /** + * Assert that the supplied TaskSet has exactly the given preferredLocations. + */ + def expectTaskSetLocations(taskSet: TaskSet, locations: Seq[Seq[String]]) { + assert(locations.size === taskSet.tasks.size) + for ((expectLocs, taskLocs) <- + taskSet.tasks.map(_.preferredLocations).zip(locations)) { + assert(expectLocs === taskLocs) + } + } + + /** + * When we submit dummy Jobs, this is the compute function we supply. Except in a local test + * below, we do not expect this function to ever be executed; instead, we will return results + * directly through CompletionEvents. + */ + def jobComputeFunc(context: TaskContext, it: Iterator[(Int, Int)]): Int = + it.next._1.asInstanceOf[Int] + + + /** + * Start a job to compute the given RDD. Returns the JobWaiter that will + * collect the result of the job via callbacks from DAGScheduler. + */ + def submitRdd(rdd: MyRDD, allowLocal: Boolean = false): (JobWaiter[Int], Array[Int]) = { + val resultArray = new Array[Int](rdd.splits.size) + val (toSubmit, waiter) = scheduler.prepareJob[(Int, Int), Int]( + rdd, + jobComputeFunc, + (0 to (rdd.splits.size - 1)), + "test-site", + allowLocal, + (i: Int, value: Int) => resultArray(i) = value + ) + lastJobWaiter = waiter + lastJobResult = resultArray + runEvent(toSubmit) + return (waiter, resultArray) + } + + /** + * Assert that a job we started has failed. + */ + def expectJobException(waiter: JobWaiter[Int] = lastJobWaiter) { + waiter.awaitResult() match { + case JobSucceeded => fail() + case JobFailed(_) => return + } + } + + /** + * Assert that a job we started has succeeded and has the given result. + */ + def expectJobResult(expected: Array[Int], waiter: JobWaiter[Int] = lastJobWaiter, + result: Array[Int] = lastJobResult) { + waiter.awaitResult match { + case JobSucceeded => + assert(expected === result) + case JobFailed(_) => + fail() + } + } + + def makeMapStatus(host: String, reduces: Int): MapStatus = + new MapStatus(makeBlockManagerId(host), Array.fill[Byte](reduces)(2)) + + test("zero split job") { + val rdd = makeRdd(0, Nil) + var numResults = 0 + def accumulateResult(partition: Int, value: Int) { + numResults += 1 + } + scheduler.runJob(rdd, jobComputeFunc, Seq(), "test-site", false, accumulateResult) + assert(numResults === 0) + } + + test("run trivial job") { + val rdd = makeRdd(1, Nil) + val taskSet = interceptStage(rdd) { submitRdd(rdd) } + respondToTaskSet(taskSet, List( (Success, 42) )) + expectJobResult(Array(42)) + } + + test("local job") { + val rdd = new MyRDD(sc, Nil) { + override def compute(split: Split, context: TaskContext): Iterator[(Int, Int)] = + Array(42 -> 0).iterator + override def getSplits() = Array( new Split { override def index = 0 } ) + override def getPreferredLocations(split: Split) = Nil + override def toString = "DAGSchedulerSuite Local RDD" + } + submitRdd(rdd, true) + expectJobResult(Array(42)) + } + + test("run trivial job w/ dependency") { + val baseRdd = makeRdd(1, Nil) + val finalRdd = makeRdd(1, List(new OneToOneDependency(baseRdd))) + val taskSet = interceptStage(finalRdd) { submitRdd(finalRdd) } + respondToTaskSet(taskSet, List( (Success, 42) )) + expectJobResult(Array(42)) + } + + test("cache location preferences w/ dependency") { + val baseRdd = makeRdd(1, Nil) + val finalRdd = makeRdd(1, List(new OneToOneDependency(baseRdd))) + cacheLocations(baseRdd.id -> 0) = + Seq(makeBlockManagerId("hostA"), makeBlockManagerId("hostB")) + val taskSet = interceptStage(finalRdd) { submitRdd(finalRdd) } + expectTaskSetLocations(taskSet, List(Seq("hostA", "hostB"))) + respondToTaskSet(taskSet, List( (Success, 42) )) + expectJobResult(Array(42)) + } + + test("trivial job failure") { + val rdd = makeRdd(1, Nil) + val taskSet = interceptStage(rdd) { submitRdd(rdd) } + runEvent(TaskSetFailed(taskSet, "test failure")) + expectJobException() + } + + test("run trivial shuffle") { + val shuffleMapRdd = makeRdd(2, Nil) + val shuffleDep = new ShuffleDependency(shuffleMapRdd, null) + val shuffleId = shuffleDep.shuffleId + val reduceRdd = makeRdd(1, List(shuffleDep)) + + val firstStage = interceptStage(shuffleMapRdd) { submitRdd(reduceRdd) } + val secondStage = interceptStage(reduceRdd) { + respondToTaskSet(firstStage, List( + (Success, makeMapStatus("hostA", 1)), + (Success, makeMapStatus("hostB", 1)) + )) + } + assert(mapOutputTracker.getServerStatuses(shuffleId, 0).map(_._1) === + Array(makeBlockManagerId("hostA"), makeBlockManagerId("hostB"))) + respondToTaskSet(secondStage, List( (Success, 42) )) + expectJobResult(Array(42)) + } + + test("run trivial shuffle with fetch failure") { + val shuffleMapRdd = makeRdd(2, Nil) + val shuffleDep = new ShuffleDependency(shuffleMapRdd, null) + val shuffleId = shuffleDep.shuffleId + val reduceRdd = makeRdd(2, List(shuffleDep)) + + val firstStage = interceptStage(shuffleMapRdd) { submitRdd(reduceRdd) } + val secondStage = interceptStage(reduceRdd) { + respondToTaskSet(firstStage, List( + (Success, makeMapStatus("hostA", 1)), + (Success, makeMapStatus("hostB", 1)) + )) + } + resetExpecting { + blockManagerMaster.removeExecutor("exec-hostA") + } + whenExecuting { + respondToTaskSet(secondStage, List( + (Success, 42), + (FetchFailed(makeBlockManagerId("hostA"), shuffleId, 0, 0), null) + )) + } + val thirdStage = interceptStage(shuffleMapRdd) { + scheduler.resubmitFailedStages() + } + val fourthStage = interceptStage(reduceRdd) { + respondToTaskSet(thirdStage, List( (Success, makeMapStatus("hostA", 1)) )) + } + assert(mapOutputTracker.getServerStatuses(shuffleId, 0).map(_._1) === + Array(makeBlockManagerId("hostA"), makeBlockManagerId("hostB"))) + respondToTaskSet(fourthStage, List( (Success, 43) )) + expectJobResult(Array(42, 43)) + } + + test("ignore late map task completions") { + val shuffleMapRdd = makeRdd(2, Nil) + val shuffleDep = new ShuffleDependency(shuffleMapRdd, null) + val shuffleId = shuffleDep.shuffleId + val reduceRdd = makeRdd(2, List(shuffleDep)) + + val taskSet = interceptStage(shuffleMapRdd) { submitRdd(reduceRdd) } + val oldGeneration = mapOutputTracker.getGeneration + resetExpecting { + blockManagerMaster.removeExecutor("exec-hostA") + } + whenExecuting { + runEvent(ExecutorLost("exec-hostA")) + } + val newGeneration = mapOutputTracker.getGeneration + assert(newGeneration > oldGeneration) + val noAccum = Map[Long, Any]() + // We rely on the event queue being ordered and increasing the generation number by 1 + // should be ignored for being too old + runEvent(CompletionEvent(taskSet.tasks(0), Success, makeMapStatus("hostA", 1), noAccum)) + // should work because it's a non-failed host + runEvent(CompletionEvent(taskSet.tasks(0), Success, makeMapStatus("hostB", 1), noAccum)) + // should be ignored for being too old + runEvent(CompletionEvent(taskSet.tasks(0), Success, makeMapStatus("hostA", 1), noAccum)) + taskSet.tasks(1).generation = newGeneration + val secondStage = interceptStage(reduceRdd) { + runEvent(CompletionEvent(taskSet.tasks(1), Success, makeMapStatus("hostA", 1), noAccum)) + } + assert(mapOutputTracker.getServerStatuses(shuffleId, 0).map(_._1) === + Array(makeBlockManagerId("hostB"), makeBlockManagerId("hostA"))) + respondToTaskSet(secondStage, List( (Success, 42), (Success, 43) )) + expectJobResult(Array(42, 43)) + } + + test("run trivial shuffle with out-of-band failure and retry") { + val shuffleMapRdd = makeRdd(2, Nil) + val shuffleDep = new ShuffleDependency(shuffleMapRdd, null) + val shuffleId = shuffleDep.shuffleId + val reduceRdd = makeRdd(1, List(shuffleDep)) + + val firstStage = interceptStage(shuffleMapRdd) { submitRdd(reduceRdd) } + resetExpecting { + blockManagerMaster.removeExecutor("exec-hostA") + } + whenExecuting { + runEvent(ExecutorLost("exec-hostA")) + } + // DAGScheduler will immediately resubmit the stage after it appears to have no pending tasks + // rather than marking it is as failed and waiting. + val secondStage = interceptStage(shuffleMapRdd) { + respondToTaskSet(firstStage, List( + (Success, makeMapStatus("hostA", 1)), + (Success, makeMapStatus("hostB", 1)) + )) + } + val thirdStage = interceptStage(reduceRdd) { + respondToTaskSet(secondStage, List( + (Success, makeMapStatus("hostC", 1)) + )) + } + assert(mapOutputTracker.getServerStatuses(shuffleId, 0).map(_._1) === + Array(makeBlockManagerId("hostC"), makeBlockManagerId("hostB"))) + respondToTaskSet(thirdStage, List( (Success, 42) )) + expectJobResult(Array(42)) + } + + test("recursive shuffle failures") { + val shuffleOneRdd = makeRdd(2, Nil) + val shuffleDepOne = new ShuffleDependency(shuffleOneRdd, null) + val shuffleTwoRdd = makeRdd(2, List(shuffleDepOne)) + val shuffleDepTwo = new ShuffleDependency(shuffleTwoRdd, null) + val finalRdd = makeRdd(1, List(shuffleDepTwo)) + + val firstStage = interceptStage(shuffleOneRdd) { submitRdd(finalRdd) } + val secondStage = interceptStage(shuffleTwoRdd) { + respondToTaskSet(firstStage, List( + (Success, makeMapStatus("hostA", 2)), + (Success, makeMapStatus("hostB", 2)) + )) + } + val thirdStage = interceptStage(finalRdd) { + respondToTaskSet(secondStage, List( + (Success, makeMapStatus("hostA", 1)), + (Success, makeMapStatus("hostC", 1)) + )) + } + resetExpecting { + blockManagerMaster.removeExecutor("exec-hostA") + } + whenExecuting { + respondToTaskSet(thirdStage, List( + (FetchFailed(makeBlockManagerId("hostA"), shuffleDepTwo.shuffleId, 0, 0), null) + )) + } + val recomputeOne = interceptStage(shuffleOneRdd) { + scheduler.resubmitFailedStages() + } + val recomputeTwo = interceptStage(shuffleTwoRdd) { + respondToTaskSet(recomputeOne, List( + (Success, makeMapStatus("hostA", 2)) + )) + } + val finalStage = interceptStage(finalRdd) { + respondToTaskSet(recomputeTwo, List( + (Success, makeMapStatus("hostA", 1)) + )) + } + respondToTaskSet(finalStage, List( (Success, 42) )) + expectJobResult(Array(42)) + } + + test("cached post-shuffle") { + val shuffleOneRdd = makeRdd(2, Nil) + val shuffleDepOne = new ShuffleDependency(shuffleOneRdd, null) + val shuffleTwoRdd = makeRdd(2, List(shuffleDepOne)) + val shuffleDepTwo = new ShuffleDependency(shuffleTwoRdd, null) + val finalRdd = makeRdd(1, List(shuffleDepTwo)) + + val firstShuffleStage = interceptStage(shuffleOneRdd) { submitRdd(finalRdd) } + cacheLocations(shuffleTwoRdd.id -> 0) = Seq(makeBlockManagerId("hostD")) + cacheLocations(shuffleTwoRdd.id -> 1) = Seq(makeBlockManagerId("hostC")) + val secondShuffleStage = interceptStage(shuffleTwoRdd) { + respondToTaskSet(firstShuffleStage, List( + (Success, makeMapStatus("hostA", 2)), + (Success, makeMapStatus("hostB", 2)) + )) + } + val reduceStage = interceptStage(finalRdd) { + respondToTaskSet(secondShuffleStage, List( + (Success, makeMapStatus("hostA", 1)), + (Success, makeMapStatus("hostB", 1)) + )) + } + resetExpecting { + blockManagerMaster.removeExecutor("exec-hostA") + } + whenExecuting { + respondToTaskSet(reduceStage, List( + (FetchFailed(makeBlockManagerId("hostA"), shuffleDepTwo.shuffleId, 0, 0), null) + )) + } + // DAGScheduler should notice the cached copy of the second shuffle and try to get it rerun. + val recomputeTwo = interceptStage(shuffleTwoRdd) { + scheduler.resubmitFailedStages() + } + expectTaskSetLocations(recomputeTwo, Seq(Seq("hostD"))) + val finalRetry = interceptStage(finalRdd) { + respondToTaskSet(recomputeTwo, List( + (Success, makeMapStatus("hostD", 1)) + )) + } + respondToTaskSet(finalRetry, List( (Success, 42) )) + expectJobResult(Array(42)) + } + + test("cached post-shuffle but fails") { + val shuffleOneRdd = makeRdd(2, Nil) + val shuffleDepOne = new ShuffleDependency(shuffleOneRdd, null) + val shuffleTwoRdd = makeRdd(2, List(shuffleDepOne)) + val shuffleDepTwo = new ShuffleDependency(shuffleTwoRdd, null) + val finalRdd = makeRdd(1, List(shuffleDepTwo)) + + val firstShuffleStage = interceptStage(shuffleOneRdd) { submitRdd(finalRdd) } + cacheLocations(shuffleTwoRdd.id -> 0) = Seq(makeBlockManagerId("hostD")) + cacheLocations(shuffleTwoRdd.id -> 1) = Seq(makeBlockManagerId("hostC")) + val secondShuffleStage = interceptStage(shuffleTwoRdd) { + respondToTaskSet(firstShuffleStage, List( + (Success, makeMapStatus("hostA", 2)), + (Success, makeMapStatus("hostB", 2)) + )) + } + val reduceStage = interceptStage(finalRdd) { + respondToTaskSet(secondShuffleStage, List( + (Success, makeMapStatus("hostA", 1)), + (Success, makeMapStatus("hostB", 1)) + )) + } + resetExpecting { + blockManagerMaster.removeExecutor("exec-hostA") + } + whenExecuting { + respondToTaskSet(reduceStage, List( + (FetchFailed(makeBlockManagerId("hostA"), shuffleDepTwo.shuffleId, 0, 0), null) + )) + } + val recomputeTwoCached = interceptStage(shuffleTwoRdd) { + scheduler.resubmitFailedStages() + } + expectTaskSetLocations(recomputeTwoCached, Seq(Seq("hostD"))) + intercept[FetchFailedException]{ + mapOutputTracker.getServerStatuses(shuffleDepOne.shuffleId, 0) + } + + // Simulate the shuffle input data failing to be cached. + cacheLocations.remove(shuffleTwoRdd.id -> 0) + respondToTaskSet(recomputeTwoCached, List( + (FetchFailed(null, shuffleDepOne.shuffleId, 0, 0), null) + )) + + // After the fetch failure, DAGScheduler should recheck the cache and decide to resubmit + // everything. + val recomputeOne = interceptStage(shuffleOneRdd) { + scheduler.resubmitFailedStages() + } + // We use hostA here to make sure DAGScheduler doesn't think it's still dead. + val recomputeTwoUncached = interceptStage(shuffleTwoRdd) { + respondToTaskSet(recomputeOne, List( (Success, makeMapStatus("hostA", 1)) )) + } + expectTaskSetLocations(recomputeTwoUncached, Seq(Seq[String]())) + val finalRetry = interceptStage(finalRdd) { + respondToTaskSet(recomputeTwoUncached, List( (Success, makeMapStatus("hostA", 1)) )) + + } + respondToTaskSet(finalRetry, List( (Success, 42) )) + expectJobResult(Array(42)) + } +} diff --git a/pom.xml b/pom.xml index c6b9012dc67b23abd4f8fc62f3cb58fa5ebf7d11..7e06cae052b58d6ebc1e5240f4810601287d9ca2 100644 --- a/pom.xml +++ b/pom.xml @@ -273,6 +273,12 @@ <version>1.8</version> <scope>test</scope> </dependency> + <dependency> + <groupId>org.easymock</groupId> + <artifactId>easymock</artifactId> + <version>3.1</version> + <scope>test</scope> + </dependency> <dependency> <groupId>org.scalacheck</groupId> <artifactId>scalacheck_${scala.version}</artifactId> diff --git a/project/SparkBuild.scala b/project/SparkBuild.scala index 03b8094f7dce58b38b40d42564ba3a4467af64c9..af8b5ba01745b59f2c8c82f3c6c6bdb58a01fa45 100644 --- a/project/SparkBuild.scala +++ b/project/SparkBuild.scala @@ -92,7 +92,8 @@ object SparkBuild extends Build { "org.eclipse.jetty" % "jetty-server" % "7.5.3.v20111011", "org.scalatest" %% "scalatest" % "1.8" % "test", "org.scalacheck" %% "scalacheck" % "1.9" % "test", - "com.novocode" % "junit-interface" % "0.8" % "test" + "com.novocode" % "junit-interface" % "0.8" % "test", + "org.easymock" % "easymock" % "3.1" % "test" ), parallelExecution := false, /* Workaround for issue #206 (fixed after SBT 0.11.0) */ diff --git a/python/pyspark/accumulators.py b/python/pyspark/accumulators.py index 61fcbbd37679fa806ff380b07cf1a941ff71bbd7..3e9d7d36da8a1b0fb81661a8ee0d02d076072939 100644 --- a/python/pyspark/accumulators.py +++ b/python/pyspark/accumulators.py @@ -196,12 +196,3 @@ def _start_update_server(): thread.daemon = True thread.start() return server - - -def _test(): - import doctest - doctest.testmod() - - -if __name__ == "__main__": - _test() diff --git a/python/pyspark/broadcast.py b/python/pyspark/broadcast.py index 93876fa738f6336f0e9a21c484acf7dd74ce0477..def810dd461dab770ef5b5b351beaf6446b381e7 100644 --- a/python/pyspark/broadcast.py +++ b/python/pyspark/broadcast.py @@ -37,12 +37,3 @@ class Broadcast(object): def __reduce__(self): self._pickle_registry.add(self) return (_from_id, (self.bid, )) - - -def _test(): - import doctest - doctest.testmod() - - -if __name__ == "__main__": - _test() diff --git a/python/pyspark/context.py b/python/pyspark/context.py index 6831f9b7f8b95aac5e82f7d16cb0597289a086a8..657fe6f98975bfa2ea86bc6435a868f0a97d4661 100644 --- a/python/pyspark/context.py +++ b/python/pyspark/context.py @@ -256,8 +256,10 @@ def _test(): globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2) globs['tempdir'] = tempfile.mkdtemp() atexit.register(lambda: shutil.rmtree(globs['tempdir'])) - doctest.testmod(globs=globs) + (failure_count, test_count) = doctest.testmod(globs=globs) globs['sc'].stop() + if failure_count: + exit(-1) if __name__ == "__main__": diff --git a/python/pyspark/rdd.py b/python/pyspark/rdd.py index 41ea6e6e14c07b9c044f9e54372a80947dd46349..4cda6cf661197f662351bb5f08154b7aae1241f2 100644 --- a/python/pyspark/rdd.py +++ b/python/pyspark/rdd.py @@ -372,6 +372,10 @@ class RDD(object): items = [] for partition in range(self._jrdd.splits().size()): iterator = self.ctx._takePartition(self._jrdd.rdd(), partition) + # Each item in the iterator is a string, Python object, batch of + # Python objects. Regardless, it is sufficient to take `num` + # of these objects in order to collect `num` Python objects: + iterator = iterator.take(num) items.extend(self._collect_iterator_through_file(iterator)) if len(items) >= num: break @@ -748,8 +752,10 @@ def _test(): # The small batch size here ensures that we see multiple batches, # even in these small test examples: globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2) - doctest.testmod(globs=globs) + (failure_count, test_count) = doctest.testmod(globs=globs) globs['sc'].stop() + if failure_count: + exit(-1) if __name__ == "__main__": diff --git a/streaming/src/main/scala/spark/streaming/api/java/JavaStreamingContext.scala b/streaming/src/main/scala/spark/streaming/api/java/JavaStreamingContext.scala index f82e6a37ccb95284fe367e123a8934e46b3bd851..e7f446a49b581ba249ae84c7436dc7b417a9f1b9 100644 --- a/streaming/src/main/scala/spark/streaming/api/java/JavaStreamingContext.scala +++ b/streaming/src/main/scala/spark/streaming/api/java/JavaStreamingContext.scala @@ -33,6 +33,14 @@ class JavaStreamingContext(val ssc: StreamingContext) { def this(master: String, frameworkName: String, batchDuration: Duration) = this(new StreamingContext(master, frameworkName, batchDuration)) + /** + * Creates a StreamingContext. + * @param sparkContext The underlying JavaSparkContext to use + * @param batchDuration The time interval at which streaming data will be divided into batches + */ + def this(sparkContext: JavaSparkContext, batchDuration: Duration) = + this(new StreamingContext(sparkContext.sc, batchDuration)) + /** * Re-creates a StreamingContext from a checkpoint file. * @param path Path either to the directory that was specified as the checkpoint directory, or