From 85e7c52bac6ae2f58a9340fde1dc94506666049d Mon Sep 17 00:00:00 2001 From: Michael Armbrust <michael@databricks.com> Date: Wed, 17 Sep 2014 12:41:49 -0700 Subject: [PATCH] [SQL][DOCS] Improve table caching section Author: Michael Armbrust <michael@databricks.com> Closes #2434 from marmbrus/patch-1 and squashes the following commits: 67215be [Michael Armbrust] [SQL][DOCS] Improve table caching section (cherry picked from commit cbf983bb4a550ff26756ed7308fb03db42cffcff) Signed-off-by: Michael Armbrust <michael@databricks.com> --- docs/sql-programming-guide.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/sql-programming-guide.md b/docs/sql-programming-guide.md index 2c226411b0..1d12394a19 100644 --- a/docs/sql-programming-guide.md +++ b/docs/sql-programming-guide.md @@ -801,12 +801,12 @@ turning on some experimental options. ## Caching Data In Memory -Spark SQL can cache tables using an in-memory columnar format by calling `cacheTable("tableName")`. +Spark SQL can cache tables using an in-memory columnar format by calling `sqlContext.cacheTable("tableName")`. Then Spark SQL will scan only required columns and will automatically tune compression to minimize -memory usage and GC pressure. You can call `uncacheTable("tableName")` to remove the table from memory. +memory usage and GC pressure. You can call `sqlContext.uncacheTable("tableName")` to remove the table from memory. -Note that if you call `cache` rather than `cacheTable`, tables will _not_ be cached using -the in-memory columnar format, and therefore `cacheTable` is strongly recommended for this use case. +Note that if you call `schemaRDD.cache()` rather than `sqlContext.cacheTable(...)`, tables will _not_ be cached using +the in-memory columnar format, and therefore `sqlContext.cacheTable(...)` is strongly recommended for this use case. Configuration of in-memory caching can be done using the `setConf` method on SQLContext or by running `SET key=value` commands using SQL. -- GitLab